
Directed theories of time and the conventionality of simultaneity

Abstract. This paper shows a sense in which the non-conventionality of simultane-

ity extends to uniformly accelerating observers. I argue that this provides evidence

against directed theories of time.

1.

David Malament (1977) argued that, in the framework of special relativity, the

relation of simultaneity relative to a uniform-velocity observer 1 is more than a mere

convention: on his reading, the standard relation is provably unique. In this article,

I will argue that:

(1) Malament’s result can be extended to uniform-acceleration observers; and

(2) this extension shows a sense in which directed theories of time are false.

A ‘directed’ theory of time is one that distinguishes an objective future-directed time

ordering for physical processes, where I take ‘objective’ to mean that the order is

independent of the judgements of co-directed observers.2 In the philosophy of time

discussion set out by McTaggart (1908), directedness is a feature of both the ‘B-series’

and the ‘A-series’, as compared to the undirected ‘C-series’, which remain extremely

popular. Of course, they are not without their critics. For example, the work of

Price (1996) led to a collection of arguments against directed theories of time. I am

sympathetic to these arguments. But, in this article, I will introduce a critique of a

different sort.

I begin with an example of how co-directed observers in special relativity can

disagree about the order of processes in time, undermining the possibility of an objec-

tive future direction of time in the sense above. The example turns on the judgements

of uniform-acceleration observers, equipped with a particular simultaneity relation. I

prove that this is the unique simultaneity relation available to such observers, in a

sense very similar to the one established by Malament for uniform-velocity observers.

I conclude by discussing this result in light of some critical responses to Malament.

2.

There is a well-known way to visualise the standard simultaneity relation in

special relativity, so let me begin by making my point in a non-technical way. Suppose

we adopt a coordinate system for a uniform velocity observer in which the observer

1In some literatures this is also referred to as clock synchronicity for an inertial observer.
2Directed theories of time don’t stand a chance if we open up our standard of objectivity to include
observers that are not necessarily co-directed. (Timelike curves in Minkowski spacetime with tangent
fields ξa and χa are co-directed if and only if χaξ

a > 0.)
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2 Directed theories of time and the conventionality of simultaneity

is at ‘rest’, and the observer’s worldline is directed ‘straight up’. The standard simul-

taneity relation says: two simultaneous events for this observer will lie on a surface

(called a simultaneity surface) orthogonal to this worldline. The surfaces are illus-

trated in the centre image of Figure 1. In contrast, for an observer moving with

uniform velocity to the left or right in this coordinate system, the simultaneity sur-

faces will be ‘tilted up’ in the direction of motion, to a degree above the horizontal

equal to the degree that the worldline tilts from the vertical. The simultaneity surfaces

for these observers are illustrated in the left and right images of Figure 1, respectively.

In special relativity, observers with different uniform velocities will generally disagree

about which spacelike-separated events are simultaneous; however, all co-directed

observers agree on the ordering of physical processes, at least as represented by a

sequence of timelike-separated events.

Figure 1. Simultaneity surfaces for uniform velocity observers.

The simultaneity surfaces for each of these three observers are orthogonal to

their worldlines: not in the Euclidean metric, but in the Minkowski metric of spe-

cial relativity.3 And, it is these surfaces that define the equivalence classes of the

simultaneity relation inn Malament’s uniqueness theorem: simultaneous points for

a uniform-velocity observer lie on the surface that is orthogonal to that observer’s

worldline.

Malament’s theorem assumes the observer’s worldline is a straight line asso-

ciated with uniform-velocity motion. However, the orthogonality of a surface and a

line does not require that line to be straight: orthogonality is defined at each point

on an arbitrary curve by way of its tangent vector field. So, this simultaneity relation

can be extended to accelerating observers as well. Reserving most formal details for

the next section, let me illustrate how this works with another picture.

Consider an observer who moves with constant acceleration, slowing down in

one direction until coming to rest, and then turning around and speeding back up

in the reverse direction. The surfaces that are orthogonal to this observer will ‘tilt’

to a different degree as the observer’s instantaneous velocity changes. As it turns

out, they all intersect on a plane O, as shown in Figure 2. But if one views these

3That is, in Minkowski spacetime (R4, ηab), the standard simultaneity relation for an inertial line L
is defined by the surfaces orthogonal to L, in that the tangent field ξa for L and a tangent field χa for
the surface are orthogonal in the Minkowski metric at their point of intersection, ξaχb = ηabξ

aχb = 0.
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O

Figure 2. Reverse chronology for an accelerating observer

orthogonal surfaces as simultaneity surfaces, then one finds that they determine a

curious chronology. Two timelike-separated events to the left of the surface O, say,

‘Harold is crowned King’, and ‘Harold is slain’, will be judged by an inertial observer to

occur one before the other. But, the co-directed accelerated observer will judge these

events to occur in the reverse order. That is, insofar as we have chosen the correct

simultaneity surfaces for each observer (the orthogonal ones), co-directed observers

disagree about the order of this causal process. We thus face the following argument.

1. If the simultaneity surfaces for accelerated observers are the orthogonal ones,

then co-directed observers disagree about the order of timelike-separated

events.

2. If co-directed observers disagree about the order of timelike-separated events,

then directed theories of time are false.

3. The simultaneity surfaces for accelerated observers are the orthogonal ones.

C. Directed theories of time are false.

The first premise is established by our example, while the second premise expresses

the definition of a ‘directed’ theory of time. So, the conclusion of this argument hinges

on the status of the third premise. How does it fare?

The simultaneity surfaces of the accelerating observer have two strange prop-

erties. First, they do not cover spacetime, and so there are events for which the

accelerated observer will can make no simultaneity judgements at all. Second, they

intersect on the plane4 O, which means that the accelerating observer would assign

multiple different times to the same events in this region. Both of these features

challenge the coherence of this observer’s judgements, and might be taken as reason

to reject the third premise.

This would be too quick. When the (measure zero) plane of intersection O is

removed from consideration, and when we restrict attention to the region outside the

light cone that the accelerated observer approaches, then the problems dissolve. This

4In Figure 2, I have illustrated two-dimensional spatial surfaces, and their region of intersection is
a one-dimensional line. The corresponding (more realistic) three-dimensional spatial surfaces will
intersect on a two-dimensional plane. I beg the reader’s forgiveness for my failure to draw this case.
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region is sometimes referred to in the physics literature as the (left and right) ‘Rindler

wedge’ region, without the central plane O. For short, I will refer to it as Rindler

region RO; it consists in the left and right wedge regions with O removed, shown in

the two-dimensional diagram of Figure 3. Restriction to this region is common in

considerations of mathematical physics like the Unruh effect5. But, more importantly

for this discussion, this seems to me to be the only region that has any hope of

supporting a simultaneity relation for an accelerating observer at all. So, it makes

sense to restrict attention to this when seeking a definition of simultaneity of any kind

for observers.

O

RO

Figure 3. Accelerated simultaneity surfaces in the Rindler region RO.

In the next section, I will show that such a simultaneity relation is indeed

available in this region. Not only does the standard (orthogonality) simultaneity

relation exist for an accelerated observer in the Rindler region, but it is provably

unique, in the same sense of uniqueness that Malament established for an inertial

observer’s simultaneity relation. Therefore: insofar as this result establishes our third

premise above, it establishes the falsity of directed theories of time.

3.

Let me now turn to the existence and uniqueness of an accelerating observer’s

simultaneity relation in the Rindler region RO. This section will be (unavoidably)

technical in nature. However, it is a straightforward extension of the theorem estab-

lished in Malament (1977), which is itself motivated by the work of Robb (1914). My

argument closely follows Malament’s unpublished notes on simultaneity for uniform-

velocity observers (Malament; 2009, §3.4). I begin with a generalisation of the stan-

dard simultaneity relation for uniform-velocity observers, to observers following an

arbitrary timelike worldline.

5See e.g. the discussion of Earman (2011).
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Definition 1 (SimC). Let C be any smooth timelike curve in Minkowski spacetime

(R4, ηab). The simultaneity relation SimC is the set of pairs (p, q) ∈ R4×R4 for which

there exists a (spatially) flat hypersurface Σ ⊂ R4 that intersects C at a point, is

orthogonal6 there, and p, q,∈ Σ.

For arbitrary curves, SimC is not an equivalence relation. But, it is for uniform-

velocity (inertial) observers, where it defines the standard simultaneity relation de-

rived by Malament (1977). And, it is easy to see that it is for a uniformly accelerated

observer as well, in the Rindler region RO consisting of the right and left Rindler

wedges without the surface of intersection O. We can state this formally as:

Proposition 1 (Existence). Let C be a smooth, uniformly accelerating7 timelike

curve in the Rindler region RO ⊂ R4 (without centre O). Then:

(S1) SimC is an equivalence relation (reflexive, symmetric, transitive) on points

(p, q) ∈ RO ×RO; and

(S2) For all p ∈ RO, there exists a unique q ∈ C such that (p, q) ∈ SimC .

The proof follows Malament exactly, and can be read off the diagram of Figure

3. So, let us turn to the uniqueness result. We begin with:

Definition 2 (C-isometry, C-invariance). Let C be a smooth curve in Minkowski

spacetime (R4, ηab). A C-isometry is an isometry ϕ : R4 → R4 that preserves C, in

that p ∈ C only if ϕ(p) ∈ C.

A two-place relation S on a region U ⊆ R4 that is C-invariant is one that is

preserved by C-isometries, in that (p, q) ∈ S if and only if
(
ϕ(p), ϕ(q)

)
∈ S, for all

C-isometries ϕ and for all p, q ∈ U .

We will be concerned with two kinds of isometries: the Lorentz boosts ϕL,

which translate along the invariant hyperbolas of Minkowski spacetime, and time-

reflection about a spatial surface. They are both required in the proof of the unique-

ness result:

Proposition 2 (Uniqueness). Let C be a smooth, uniformly accelerating timelike

curve in the Rindler region RO (without centre O), and let S be a two-place relation

on RO. If S satisfies (S1) and (S2), and is also C-invariant, then S = SimC .

Proof. For all p ∈ RO, let c(p) be the (unique) point in the flat hypersurface Σ

containing p such that c(p) ∈ C. Then
(
p, c(p)

)
∈ SimC for all p ∈ RO, and also

(p, q) ∈ SimC iff c(p) = c(q) for all p, q ∈ RO.

The main step of the proof is to show that the following condition also holds:

(1)
(
p, c(p)

)
∈ S for all p ∈ RO.

6i.e. if ξa and χa are respective tangent vector fields for Σ and C, then χaξ
a = 0 at the point of

intersection.
7i.e. the acceleration of its tangent vector field ξn∇nξ

a has constant norm and is everywhere parallel
to itself.
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This quickly entails our conclusion, following Malament’s argument exactly: first, (⇒)

assume (p, q) ∈ S. Then
(
q, c(q)

)
∈ S by Condition (1), and so by transitivity (S1)

we have
(
p, c(q)

)
∈ S. But

(
p, c(p)

)
∈ S as well, and so by the uniqueness statement

of (S2), we have that c(p) = c(q). This implies that (p, q) ∈ SimC . Conversely, (⇐)

assume (p, q) ∈ SimC . Then c(p) = c(q). Moreover, by Condition (1),
(
p, c(p)

)
∈ S,

and thus
(
p, c(q)

)
∈ S. Therefore, since

(
q, c(q)

)
∈ S by (S2), we have by reflexivity

and transitivity that (p, q) ∈ S.

We thus turn to establishing Condition (1): let p ∈ RO. By (S2), there is a

unique point q ∈ C such that (p, q) ∈ S. For a uniformly accelerating curve, there

is one temporal reflection ϕT that is a C-isometry. We write Σ to denote the surface

about which it reflects. Let ϕL be the Lorentz boost that maps p onto Σ; it also maps

c(p) onto Σ, and is a C-isometry.

Since ϕL(p) is on the reflection surface, the C-isometries ϕL and ϕT have the

property that ϕT

(
ϕL(p)

)
= ϕL(p), or equivalently: Φ(p) = p, where Φ = ϕ−1L ◦ϕT ◦ϕL.

Moreover, by the C-invariance of S, (p, q) ∈ S implies that,

(Φ(p),Φ(q)) ∈ S.

So, (p,Φ(q)) ∈ S. But both q and Φ(q) are on the curve C, so by the uniqueness

clause of (S2), q = Φ(q), or equivalently, ϕL(q) = ϕT ◦ ϕL(q).

C

Σ

p

c(p)

ϕL

(
c(p)

)
q

ϕL(q)

ϕT ◦ ϕL(q)

ϕL

Figure 4.

Now, since ϕL

(
c(p)

)
is on the reflection surface Σ and on C, it must be between

ϕL(q) and ϕT ◦ ϕL(q); see Figure 4. So, ϕL(q) = ϕT ◦ ϕL(q) implies that ϕL(q) =

ϕL

(
c(p)

)
. Applying ϕ−1L to both sides thus gives q = c(p), which implies

(
p, c(p)

)
∈ S,

and hence Condition (1). �



Directed theories of time and the conventionality of simultaneity 7

4.

Some of the critical responses to Malament’s assumptions apply to the present

argument as well. I have little to add to that debate.8 But I will address one pressing

concern, that Malament’s original argument (and mine, so far) rely on an assump-

tion of time reversal symmetry.9 The uniqueness results we prove require that the

simultaneity relation S be invariant under the isometries that preserve a curve C —

including time reversal. This ensures that the phrase ‘simultaneous events’ means

the same thing in all regions that are related by a symmetry of Minkowski spacetime

structure, such as those that differ by a spatial translation, or by a change of tem-

poral direction. But this latter assumption can be questioned. The assumption that

the meaning of simultaneity is invariant under time reversal might be viewed as beg-

ging the question against defenders of a directed theory of time, who simply assume

the opposite. Moreover, from a scientific perspective, it is well-known that certain

weakly-interacting matter fields violate time reversal symmetry. And, without the

assumption of time reversal invariance, the uniqueness result fails: there are many si-

multaneity relations S that are preserved by the time-reversal-excluding C-isometries

of a uniformly accelerating curve, including the ‘bent surfaces’ of Figure 5. This kind

of simultaneity relation is invariant under (Lorentz) velocity boosts, but not under

time reversal.

OO ϕLϕL

Figure 5. ‘Bent surfaces’ of simultaneity related by a boost ϕL

8Redhead (1993, p.114) suggests that in order to avoid the result, “we can dispute that simultaneity
need be an equivalence relation”, or adopt a privileged “neo-Lorentzian” frame of reference. But
we are interested in situations where simultaneity has some well-defined meaning, whereas it is not
obvious what that would be if it is not an equivalence relation. And, a “neo-Lorentzian” approach
to relativity theory is arguably a different theory entirely, and the status of simultaneity still re-
mains of interest in standard (Minkowski spacetime) approaches. Janis (1983, 2018) argues that, by
allowing for the conventional choice of an initial curve representing the observer, the conventionality
of simultaneity is restored. But this simply shifts the meaning of “conventionality of simultaneity”
(in a single reference frame) to be nothing more than the well-known “relativity of simultaneity”
(relative to different reference frames), which is a well-understood fact about Minkowski spacetime.
9This issue was pointed out by Sarkar and Stachel (1999) and Ben-Yami (2006), and is discussed by
Malament (2009, p.61).
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The uniqueness results are of independent interest in the (time reversible) cases

in which they apply. But more importantly, this objection simply does not solve the

problem for the defender of a directed theory of time. Notice that the counterexample

above still features chronology reversal, in that ‘moving up’ through such simultaneity

surfaces on the right wedge corresponds to ‘moving down’ on the left. This suggests

that the problem actually arises out of facts about the Lorentz transformations of

special relativity, and has nothing to do with time reversal. Indeed, it is possible

to prove a precise version of this statement. To give it, we first need a definition

of isometry and invariance that excludes time reversal. Let τa be a smooth timelike

vector field in a temporal orientation10; this allows us to define a future-directed vector

field ξa to be one satisfying τaξa > 0.

Definition 3 (C↑-isometry, C↑-invariance). Let (R4, ηab, τ
a) Minkowski spacetime

with a temporal orientation. Let C be a smooth curve in Minkowski spacetime

(R4, ηab). A C↑-isometry is a C-isometry that preserves the temporal orientation.

A two-place relation S on R4 that is C↑-invariant is one that is preserved by all

C↑-isometries.

We will also need to define what it means for a simultaneity relation to respect

(and not respect) chronology. Let I denote an interval of real numbers, to serve as

indices for a time.

Definition 4 (chronology-respecting relation). Let (R4, ηab, τ
a) Minkowski spacetime

with a temporal orientation. A two-place equivalence relation S on U ⊆ R4 is

chronology-respecting if and only if the equivalence classes of S can be ordered as

a one-parameter family of sets {Σt | t ∈ I} where, if f is the function that maps each

p ∈ U to the index t for which p ∈ Σt, then f is a global time function11 for U .

The problem for directed theories of time can now be considerably strength-

ened. Unlike Malament’s original argument, we do not need to assume time reversal

invariance, or even (S2), that for all p ∈ RO, there exists a unique q ∈ C such that

(p, q) ∈ S. If the simultaneity relation S is an equivalence relation that is invariant

under the non-time-reversing symmetries that preserve a curve C, then it cannot be

chronology-respecting in the way that directed theories of time require.

Proposition 3 (No Rindler Chronology). Let (R4, ηab, τ
a) be Minkowski spacetime

with a temporal orientation. Let C be a smooth, uniformly accelerating timelike

curve in the Rindler region RO (without centre O), and let S be a two-place relation

10A temporal orientation on a Lorentzian manifold (M, gab) is an equivalence class of all smooth
timelike vector fields [τa] that are co-directed. If such an equivalence class exists, then there are
exactly two, consisting of the vector fields that all ‘point’ into the same lightcone lobe, providing a
global way to distinguish the past and future at every spacetime point.
11A global time function on U is one whose derivative ∇af is a smooth future-directed timelike vector
field.
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on RO. If S is an equivalence relation (S1) and also C↑-invariant, then it is not

chronology-respecting.

Proof. Suppose for reductio that the opposite is true: let {Σt | t ∈ I} be the

chronology-respecting family of equivalence classes for S, and let f be the associated

global time function. This f satisfies ξa∇af > 0 for every future-directed timelike vec-

tor ξa. So, ξ(f) > 0, which implies that f increases monotonically on future-directed

timelike curves.

OO
p

p′q

q′
Σt

Σt Σt′

Σt′

Figure 6.

But f cannot be monotonically increasing on such curves in both wedges of

RO. To see this, let ϕL be a C-preserving Lorentz boost that is not the identity. Then,

for any equivalence class Σt, C
↑-invariance implies that ϕL(Σt) is also an equivalence

class, which we denote Σt′ for some t′ 6= t. Consider a future-directed timelike curve

that intersects Σt and Σt′ and lies in the same wedge as C. Then the point p where

the curve intersects Σt is in the causal future of the point p′ := ϕL(p) ∈ Σt′ . The

opposite is true for a future-directed timelike curve in the wedge opposite of C for

points q ∈ Σt and q′ ∈ Σt′ (Figure 6). So, if f(p) = t < t′ = f(p′) in one wedge, then

f(q) = t > t′ = f(q′) in the other, which is a contradiction. �

As a last resort, the defender of a directed theory of time might deny that

an observer will view simultaneity surfaces as relevant for determining the direction

of time.12 But this would be to reject one of the following two assumptions, both

of which seem plausible (to me). Suppose we assume, as is ubiquitous in special

relativity, that an observer,

(1) uses a simultaneity surface to judge which points occur simultaneously at a

given event on their worldline; and,

(2) experiences events as a directed temporal ordering, at least in some psycho-

logical sense.

12I thank Adam Caulton for this suggestion (private communication).
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Then the observer’s experience of simultaneity surfaces will have a directed order as

well, and thus determine a temporal direction. That is perfectly compatible with the

argument of this paper. My conclusion is just that, in the context described above,

the time order prescribed by any given observer in special relativity is not objective

— it is not observer-independent.
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University of Pittsburgh Press, pp. 103–128.

Robb, A. A. (1914). A theory of time and space, Cambridge: Cambridge University

Press.

Sarkar, S. and Stachel, J. (1999). Did Malament prove the non-conventionality of

simultaneity in the special theory of relativity?, Philosophy of Science 66(2): 208–

220.


	1. 
	2. 
	3. 
	4. 
	References

