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1. The Idea of a Representation Theorem

A representation theorem has the shape: all items satisfying some abstract description
A are identical to, or isomorphic to, a concrete object O; with the identification or
isomorphism often having a well-controlled freedom F , e.g. a uniqueness up to a
certain transformation, T . Typically, F is a Lie group of transformations, and T ∈ F .

The general themes:
(A): The idea of A as more cognitively secure than O (because in a preferred language,
and-or having a clearer operational language, and-or being self-evident or at least more
self-evident). Then the idea is: the representation theorem vindicates the apparently
cognitively insecure O.
(B) The theorem also shows that what seemed a generalization (going from O to A)
is in fact not. And this is enlightening, even reassuring.
(C) Also the freedom shown in F , explains, i.e. explains away/makes one comfortable
with, the redundancy or artefacts one can/might discern, and find suspicious, in O.
(D) Often we do NOT have a representation theorem in the above sense! That is: the
items satisfying abstract description A form a large class of non-isomorphic objects,
even of the same type as O. Then the aim/benefit is to study the variety of the Os,
and how that variety encodes information about A. Think after all of representation
theory: A the abstract group, each O a specific representation. E.g. a unitary
representation on a complex vector space. The variety of the Os in this example is
their falling into different equivalence classes under the equivalence relation of unitary
equivalence.

2. Examples

1. Hilbert’s axiomatization of Euclidean geometry, 1899: —
The main philosophical themes here are:

(i): the rise of formal methods, and interest in axiomatization and its meta-
theory, across allof pure mathematics, from 1850 to 1930+;

(ii): Hilbert’s axioms are in the traditional Greek, i.e. synthetic, style, and
the representation theorem can be regarded as vindicating analytic geometry, espe-
cially Cartesian coordinates.

(iii): continuity, which distinguishes IR from the rationals, is a second or-
der notion, i.e. can only be expressed by quantifying not only over objects (the usual
variables: x, y, z, ...), but also over properties: saying e.g. ∀P .

(iv): the tradition of such theorems continued, e.g. work by Tarski’s school
in 1950s. Cf. Tarski (1959), ‘What is elementary geometry?’

(v): the commitment to spatial points: cf. example 4 below.
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A = Hilbert’s axioms governing a domain of points, and a three-place relation of
Betweenness B(x, y, z) and a four-place relation of Congruence C(w, x, y, z).1

O = IR2, with its Euclidean metric.
F = the affine group of translations, rotations and (spatially constant) dilations

acting on O = IR2. These three kinds of element of F reflect the freedom (given a
choice of Cartesian coordinates for the plane: such a choice being a bijection from
the geometric plane to IR2), respectively:

to shift origin, to rotate axes, and to change the unit of length.
(For example, the axioms for Congruence, and more generally the axioms, do not
dictate a unit of length).
Thus for theme (C): the redundancy/artefacts in O is the choice of an origin and
direction of axes, and length unit, for Cartesian coordinates in IR2.

This style of axiomatization, and associated representation theorems, has been
extended to the classical non-Euclidean geometries (elliptic, hyperbolic and spheri-
cal), and even to arbitrary Riemannian manifolds. (At least: so it is said. Cf. Belot
(2011, 11 note 10, and 32, note 64, citing Mundy (1992, especially Section 3 and
Appendix)).

2. The Robb synthetic axiomatization of special relativity, 1914:—
Arthur Robb (1914, 1921, 1936) did for the kinematics of special relativity, i.e. for
Minkowski spacetime, what Hilbert did for Euclidean space. But using just a single
2-place predicate representing the relation of causal connectibility (by a signal at most
as fast as light) among spacetime points.

Cf John Winnie’s exposition (1977) for a detailed modern account, Mundy (1986)
for a simplification; and e.g. Zeeman (1974) for an example from the mathematical
literature of the same theme, viz. ‘causality determines all the structure’.

The main philosophical themes here turn on the consequence that all of Minkowski
geometry is determined by (in philosophers’ jargon: supervenient upon; in logicians’
jargon: implicitly defined by) the extension of (philosophers’ jargon: facts about) the
relation of causal connectibility . This consequence:

(i): revived the idea (in Reichenbach et al.) of a ‘causal theory of time’;
(ii): refuted the idea that distant simultaneity was not merely frame-

dependent, but also merely conventional: more precisely: it refuted this idea provided
that the facts of causal connectibility among spacetime points were not conventional.

A = Robb’s axioms governing a domain of points, and just one single binary pred-

1Saying ‘domain of points’ is anachronistic: it follows a later tradition, but Hilbert and various
formalizations that followed him had various geometric figures determined by a finite set of points,
e.g. straight lines, line segments and polygons as values of individual variables. Cf. Tarski (1959,
footnote 3).

2



icate After(x, y) representing causal connectibility. Synthetic chronogeometry!
0 = Minkowski spacetime, Mink: identified with IR4 with the Minkowski metric.
F = the Poincare group, augmented by (spacetime-constant) dilations, acting on

O = Mink. As in Example 1: the various kinds of element of F—spacetime trans-
lations, spatial rotations, boosts and dilations—reflect the freedom, given a choice of
inertial coordinates (a choice of Lorentz chart) for spacetime, respectively: to shift
spacetime origin, to rotate spatial axes, to boost, and to change the unit of length.

This example is clearly a cousin of Hilbert’s axiomatization of geometry.

Two broad kinds of philosophical doubt, about:
(i) the existence of abstract mathematical objects such as real numbers (‘against

Platonism’) and
(ii) about the existence of spatial or spacetime points,

prompt two further programmes: the effort to write down physical theories like those
usually cast in terms of numbers and spacetime:

(i): without reference to any abstract objects, especially real numbers as
the values of physical fields (e.g. of a scalar gravitational potential): the nominalism,
the ‘mathematical atheism’, of Field (1980): cf. Example 3.

(ii): without reference to spacetime or spatial points: relationism, as vs.
substantivalism—in one sense out of many ... cf. Example 4.

3. Field’s synthetic axiomatization of Newtonian gravitation, 1980:—
The ‘pure mathematical atheist’, Hartry Field (1980) proposes to ‘vindicate’ pure
mathematics as literally false—there are no pure mathematical numbers, functions
etc.!—though it is instrumentally useful in physics. (That pure mathematics is, not
merely useful, but indispensible, to state physical theories is the core of the indispens-
ability argument for mathematical platonism: it is advocated by e.g. Quine.).

Field aims to show that pure mathematics is a conservative extension, in logicians’
sense, of our physical theories. So he is committed to formulating an adequate physics
without any reference to numbers, functions etc. But he is happy to accept spatial
and spacetime points (he is a ‘substantivalist’), and relations among them.

His example is: Newtonian gravitational theory in a Newtonian/Galilean space-
time setting. This is usually formulated with: a gravitational potential φ which is a
scalar (and so has values ∈ IR!); and a mass density ρ which is also a scalar: they are
coupled by Poisson’s equation (an equation of values ∈ IR!).

NB: for simplicity, I shall set aside the dynamics (the self-gravitation!) of ρ. This
is usual, even in discussions of curved spacetime, aka: Newton-Cartan formulations
of Newtonian gravitational theory. So just think of ρ as given across spacetime: and
as determining the timelike curves of free-falling particles via the prescription that
a particle’s 4-acceleration is −∇φ. (Newton-Cartan formulations trade in φ for a
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curved connection, in such a way that Poisson’s equation becomes an analogue—a
close analogue!—of Einstein’s general relativistic field equations.)

So Field aims to state the ‘same content’ as these usual formulations—in ‘syn-
thetic form’.

So we expect him to use e.g. a three-place predicate representing Betweenness of
values of φ amongst three spacetime points x, y, z: call it Bφ(x, y, z). Similarly, we
expect a predicate representing Betweenness of values of ρ: call it Bρ(x, y, z). And
we expect, of course:

a synthetic axiomatization of Newtonian/Galilean spacetime in Hilbert-
Robb style; using e.g. a ‘Hilbertian’ spatial betweenness predicate holding between
(absolutely!) simultaneous spacetime points x, y, z: call it say, Bspace(x, y, z);

synthetic axioms governing the predicates that encode mass density and
gravitational potential, and their relations to Newtonian spacetime.

Field (1980) presents such a nominalization of Newtonian gravitational theory. In
order to argue that:

(i) his nominalization is adequate; i.e. captures the (atheistically accept-
able!) content of the usual (naughtily platonistic!) formulation(s);

(ii) the usual formulations’ pure mathematical objects are ‘only useful, but
not indispensable’:
he proves a representation theorem. Namely: Every model of his axiom system is
isomorphic to a model of a usual formulation. More precisely ...

A = Field’s nominalized formulation of Newtonian gravitational theory; with its
many models (of course: non-isomorphic, since the distributions of φ, ρ can vary).

O = (a model of) Newtonian gravitational theory in a usual formulation; with its
many (again, of course: non-isomorphic) models. With, in each model, some choices
of: spatial origin (absolutely at rest, or inertially moving in the Newtonian/Galilean
cases, respectively), and spatial axes, and units for spatial and temporal length in
IR4.

F = the Newtonian/Galilean symmetry group for spacetime structure, augmented
by (spacetime-constant) dilations, acting on O. As in Examples 1 and 2: the var-
ious kinds of element of F—spacetime translations, spatial rotations, boosts and
dilations—reflect the freedom, given a choice of inertial coordinates for Newtonian/Galilean
spacetime, respectively: to shift spacetime origin, to rotate spatial axes, to boost, and
to change the unit of length.

(There is a subtle discussion to be had about whether F should also be taken as
the dynamical symmetry group. But I again set aside issues about dynamics!)

The main philosophical themes are:
(a): Is it really so that we should reject mathematical platonism? More specifi-

cally, about our topic of representation theorems: is A really more cognitively secure
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than the platonistic O? (Cf. theme (A) in Section 1 above).
(b): Can this nominalizing strategy be carried out for other physical theories?

What about theories with a curved spacetime? Indeed with a dynamical spacetime?
Even if we do not adopt Field’s mathematical atheism requiring heterodox treatment
of the field-content, there is (so far as I know) no synthetic ‘Hilbert-Robbian’ charac-
terization of them ...And anyway: what about theories cast in very different terms,
of a state space: like Lagrangian or Hamiltonian mechanics, or field theory?

(c): Field’s dialectical position is subtle: as follows. He the mathematical atheist
speaks of the ‘forbidden fruit’ (i.e. the allegedly non-existent), numbers etc. in his
representation theorem, i.e. in his attempt to prove to us that we do not need to
refer to them to do science, and so should not believe in them. This is certainly
subtle: maybe it is unstable. It also raises the interesting technical, and dialectically
relevant, question. What about the mathematical commitments of the methods by
which he proves the representation theorem, rather than the content of it, i.e. what
is explicitly mentioned by the statement of the theorem? Do those methods commit
him to mentioning ‘forbidden fruit’? If so, is that mention dialectically legitimate?

(d): Field uses (and of course cites) a tradition of representation theorems in the
foundations of empirical measurement in general (Suppes, Luce Raiffa): which are
taken to justify a numerical measure of physical quantity (and its associated unit and
scale conventions) starting from suitable non-numerical properties and relations of
empirical objects. For example, they have a theorem about mass measurement, with:

A = axioms for Ôbeing more massive thanÕ as a partial order on some ob-
jects (usually assumed to be finite in number); also with an operation of mereological
fusion (think Ôweighing togetherÕ) on objects.

O = IR, considered as values of the objects’ masses. The ‘isomorphism’
is now an embedding: i.e. the function that makes the assignment of real-number
masses to the objects. There is a natural zero, the mass of the empty object. But
no natural unit. And all masses are to be positive, let us say. So F = linear maps
from IR+ to IR+; so F is itself given by IR+. So here, as to Section 1’s initial theme
(C): the redundancy or artefacts in O is the choice of a unit of mass. So there is a
philosophical literature about such theorems.

The representation theorem of this kind that, so far as I know, is deepest,
mathematically and conceptually, is the Helmholtz-Lie theorem that the free mobility
of rigid bodies requires a space of constant curvature. But I set it aside: (sad to say,
it has dropped out of the philosophical literature ...).

(e): The philosophical literature has also pursued questions in logic raised by
Field’s programme: e.g. about the relation between representation theorems and
proofs of conservativity; and about the need to invoke scecond-order logic to charac-
terize continuity.

(f): Should we be substantivalists about spacetime?! This question, and the men-
tion in (d) of embedding a finite number of empirical objects into a pure mathematical
structure (in (d): into IR), prompts our final example...
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4. Relationism a la Mundy: 1980s:–
The question, ‘Should we be substantivalists about spacetime?!’ is of course enor-
mous. It runs from the Leibniz-Clarke Correspondence of 1710, through e.g. Mach,
Barbour, and Earman, to debates about the required basic spatiotemporal ingredi-
ents of quantum gravity. But here, we pick off a tiny fragment, which is adjacent
to the topic of Hilbert-Robbian representation theorems: though it is a matter of
embedding, rather than isomorphism.

The idea (Mundy 1982) is:— Imagine N point-particles in Euclidean space (IR3,
or its affine cousin) with their induced relations of distance and angle amongst them-
selves. The relationist wants to say: the correct physical account is:

‘These particles, and their mutual relations of distance and angle can be embed-
ded in Euclidean space. This embedding is of course with the usual freedom, viz. up
to a translation and rotation. That freedom represents a redundancy in the usual
substantivalist formulation i.e. invoking an ambient space’.

And similarly, for the motion of N point-particles (i.e. taking account of veloc-
ity/momentum), and for N point-events in Minkowski spacetime.

It is clear that even if this proposal can be made to work to give an anti-
substantivalist account of the geometry of point particles in Euclidean space, or point-
events in Minkowski spacetime, there will remain much work, to get:

(i) a theory of motion;
(ii) an analogue for field theories: which seem in any case to undercut relation-

ism, since they replace the (allegedly suspicious) void by a plenum, which is presum-
ably relationistically acceptable: (though of course there are issues about patches of
space or spacetime where the field vanishes).
But let us focus on the simple case of N point-particles , or N point-events. The
comments for these are the same: so I shall say ‘particles’, for short. There are three
main concerns.

(1): Is the relationist formulation, attributing relations of distance and angle
among the N particles parasitic on the substantivalist formulation? The main prob-
lem here is that there are many constraints about such relations, the simplest being
the triangle inequality, which are easily understood from a substantivalist perspective
as restrictions to the N particles of an ambient geometry of space—but which the
relationist must take as ‘brute facts’ about the particles that prompt the ‘illusion’ of
an ambient space.

NB: looking further afield. This kind of problem—‘write down the inequalities
among relative distances that are together sufficient to ensure an embedding in to a
given space’—has a considerable history: e.g. in Tait’s problem of characterizing in-
ertial motion of N noon-interacting particles: (Tait 1884, discussed in Barbour (1999,
p. 1000 et seq).

It also has delightful, and insightful, analogues in probability theory: viz. ‘write
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down the inequalities among single and joint probabilities that are together sufficient
to ensure they can be given a Kolmogorov (i.e. orthodox classical) representation’.
This was addressed by Boole himself, and rediscovered in the philosophical literature
about Bell’s theorem—which characterizes classical probability functions by linear
inequalities (‘Bell inequalities’) among single and joint probabilities.

(2): Embedding N particles only uses up a bounded region R of IR3 (or IR4): so
the relationist’s reasons for asserting the embedding are equally reasons to assert an
embedding into a space that is globally very unlike IR3 (or IR4): by being bounded,
or having another global topology; or by being curved beyond the region R. So the
relationist strategy fails to capture our commitment to e.g. Euclidean space. This
kind of problem is discussed by Earman (1989: 166-170).

(3): What about the role of possibility? The relationist formulation must admit
there are various possible configurations of the N particles (all obeying the many
constraints listed in (1)). Can they also legitimately appeal to possible, not actual,
particles? In order, e.g., to address the problems in (2). If so, how? This kind of
problem is discussed by Manders (1982: 166-170), Butterfield (1984), Earman (ibid)
and Belot (2011).
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