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übersetzen sie es in ihre Sprache, und
dann ist es alsobald ganz etwas
anders.

Goethe

2



Contents

I. Logic 8

1. Models 9
1.1. Review of first-order semantics . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2. Relationships between models . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3. Definability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Theories 16
2.1. Translations between theories . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Ramsey sentences 23
3.1. Second-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Ramseyfication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

II. Newtonian mechanics 30

4. Newtonian mechanics 31
4.1. Introduction to N-particle Newtonian mechanics . . . . . . . . . . . . . . 31
4.2. Changes of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5. Symmetry and equivalence 39
5.1. Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2. What makes a measurement? . . . . . . . . . . . . . . . . . . . . . . . . . 42

6. Galilean spacetime 45
6.1. Euclidean space and time . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2. Galilean spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3



III. Electromagnetism 51

7. Electromagnetism 52
7.1. Electromagnetism on Newtonian spacetime . . . . . . . . . . . . . . . . . 52
7.2. Lorentz boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3. Minkowski spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8. Gauge transformations of electromagnetism 60
8.1. The electromagnetic potential . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2. Gauge symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.3. Fields and potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9. The Aharonov-Bohm effect 66
9.1. Potentials around a solenoid . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.2. Quantum charges in classical electromagnetism . . . . . . . . . . . . . . 69
9.3. The reality of the fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

IV. Categories 74

10. Introduction to category theory 75
10.1. Motivation and definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11. Functors between categories 80
11.1. Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
11.2. Equivalence functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
11.3. Forgetful functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

12. Categories of theories 88
12.1. Categories of Tarski-models . . . . . . . . . . . . . . . . . . . . . . . . . . 88
12.2. Categories of electromagnetic models . . . . . . . . . . . . . . . . . . . . 92

A. Vector and affine spaces 97
A.1. Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2. Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3. Affine spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.4. Vector calculus on Euclidean space . . . . . . . . . . . . . . . . . . . . . . 104

4



B. Group theory 106
B.1. Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.2. Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C. Differential forms 110
C.1. Multi-covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.2. Euclidean multi-covectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.3. Minkowski multi-covectors . . . . . . . . . . . . . . . . . . . . . . . . . . 112
C.4. Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.5. Differential forms and Euclidean vector calculus . . . . . . . . . . . . . . 115

5



Introduction

This is a book about structure in the representations of physics, about equivalence be-
tween such representations, and about the relationship between these two concepts. In
a slogan, that relationship is as follows: for two representations to be equivalent is for
them to posit the same structure, and the structure of a representation is that which
it has in common with equivalent representations. The question of which half of this
slogan is primary—that is, whether we should take equivalence to be a derivative no-
tion from structure, or the other way round—is the animating question behind much
of what follows. That said, the main aim of this book is not to answer that question,
but to introduce students to the tools and ideas that can, I think, be useful in seeking to
answer it.

The book is split into four parts, with each part comprising three chapters (with each
of the twelve chapters being roughly the same length). Part I looks at issues of structure
and equivalence in the context of formal, logical languages. Chapters 1 and 2 introduce
notions of definability and translation with regards to (respectively) models and theo-
ries of first-order languages, and how these notions can be used to make precise ideas
about equivalence, while Chapter 3 looks at whether Ramsey sentences provide a plau-
sible way of explicating the structure of such a theory. The goal is to lay some ideas
on the table, in the (admittedly artificial) context of formal languages, that we can use
in studying the more physics-oriented structures introduced subsequently. This part of
the book presumes familiarity with standard predicate logic.

Parts II and III engage most directly with questions of structure and equivalence as
they arise within physics, especially as concerns symmetries in physics. My original
intention was to write something much more general about symmetry and equivalence
in physics, with appositely chosen case studies to illustrate those general lessons. How-
ever, this ambition foundered on three problems: a strict word-count, the desire to make
this book even remotely pedagogically accessible, and the inverse relationship between
tractability and generality. So instead, I offer two case studies, and leave it to the reader
to consider how the lessons drawn from them might (or might not) generalise to other
theories.
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Thus, Part II is about N-particle Newtonian mechanics, and how its spacetime sym-
metries can be used as a way of recognising the presence of ‘surplus structure’ in repre-
sentations of this theory: Chapter 4 introduces the theory and its symmetries, Chapter
5 discusses the reasons for thinking symmetry-variant structure is surplus structure,
and Chapter 6 outlines how to formulate the theory without using such structure. Part
III takes up these questions about symmetry and surplus structure, but applied to the
symmetries of electromagnetism. These symmetries include both its spacetime sym-
metries (in Chapter 7) and its internal gauge symmetries (in Chapters 8 and 9). These
parts should be mostly accessible to readers provided they have some undergraduate-
level knowledge of physics, although some of the tools used are more abstract than one
would typically find in an undergraduate physics course. The appendices—on vector
and affine spaces, group theory, and differential forms—provide a guide to these tools,
although one more suitable for reference or refreshment than introduction.

Finally, Part IV discusses the use of category-theoretic tools to study structure and
equivalence: Chapters 10 and 11 introduce (respectively) categories and functors, and
Chapter 12 describes how to apply them to categories formed from theories—including
both the formal logical theories discussed in Part I, and the physical theories discussed
in Parts II and III. So, this part of the book also seeks to bring together the ideas artic-
ulated in the earlier parts of the book. It is also perhaps the part of the book that will
be most novel to students, at least to those coming from a philosophy or physics back-
ground; I hope, however, that it illustrates how the basic concepts, at least, are more
readily understandable than one might have expected.

[TO ADD: ACKNOWLEDGMENTS AND THANKS]

Munich, October 2020
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Part I.

Logic
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1. Models

We begin our investigations by looking at the structure of, and equivalence relations
between, models of first-order logic. This is a highly stylised context, especially if our
ultimate goal is an inquiry into structure and equivalence in physics: it is a common-
place that for most theories in physics, a presentation of those theories in first-order
logic is likely neither possible nor desirable. Nevertheless, as we will see, the first-
order case will prove to have complexities enough for us to start with; and it will teach
us some lessons that we can use when we turn to physics in the later chapters of this
book.

1.1. Review of first-order semantics

We begin with a brief review of the terminology and notation of standard first-order
model theory.1 The foundational concept here is that of a first-order language, which
consists of a logical vocabulary (common to all first-order languages) and a non-logical
vocabulary or signature (different for each first-order language). The logical vocabulary
comprises a set Var of variables, x1, x2, . . . , y1, y2, . . . , z1, z2, . . . ; the equality symbol p=q;
the negation, conjunction, disjunction and implication symbols p¬q, p^q, p_q and p!q;
and the universal and existential quantifiers p8q and p9q.

In general, a signature consists of both predicate-symbols and function-symbols.
However, we will confine ourselves to signatures that only contain predicate-symbols:
many of the notions in which we are interested (concerning definability and translata-
bility) are much easier to handle when we exclude function-symbols, and those same
notions demonstrate that any theory employing function-symbols is, in a certain sense,
equivalent to a theory that uses only relation-symbols. In an ideal world we would
have the space to investigate and discuss this notion of equivalence; but in this (as in so
many respects), the world is far from ideal. Thus:

1Much of the notation and conventions follow Hodges (1997).
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Definition 1. A signature consists of a set ⌃ of predicate-symbols (denoted by letters such
as P, Q, R, etc.), each of which is associated with a natural number known as its arity.

�

So unary predicate-symbols (those which take a single argument) have an arity of
1; binary predicate-symbols (those which take two arguments, also known as binary
relation-symbols) have an arity of 2; and so on. Where appropriate, the arity of a symbol
will be indicated by adding a parenthetical superscript: to introduce R as a binary
predicate-symbol, for instance, we will write its first appearance as R(2).

Given a signature ⌃, one can define the set Form(⌃) of well-formed ⌃-formulae, using
the standard compositional rules of predicate logic. A variable in a formula is free if
it is not bound by any quantifier; we will use �(⇠1, . . . , ⇠n) to denote a formula with
the variables ⇠1, . . . , ⇠n free, and �(⌘1/⇠1, . . . , ⌘n/⇠n) to denote the result of uniformly
substituting ⌘i for ⇠i throughout such a formula. The set of ⌃-sentences is the set of
closed ⌃-formulae (formulae with no free variables).

The semantics for first-order model theory is given by Tarski-models. A Tarski-model
A for a language with signature ⌃ will be referred to as a ⌃-model:2

Definition 2. A ⌃-model consists of a set |A| (the domain of A), equipped with a subset
⇧A ✓ |A|n (the extension of ⇧ in A) for every ⇧ 2 ⌃. �

A Tarski-model A determines truth-values for formulae, relative to an assignment of
elements of |A| to variables in Var, in the standard recursive fashion. If the formula �
has the variables x1, . . . , xn free, and if A satisfies � relative to the assignment of ai 2 |A|
to xi, then we write A |= �[a1, . . . , an]. If � is a sentence, then the variable-assignment
no longer matters, and we write simply A |= �.

1.2. Relationships between models

Most of the above should be familiar if you have taken a standard logic course before.
Here, however, we are interested in exploring the use of these ideas to make precise
concepts of structure and equivalence. For these purposes, it is very useful to start
thinking about the kinds of relationships that Tarski models can bear to one another.
First, for a given signature ⌃, a homomorphism from a ⌃-model A to another ⌃-model B
is a map which, in a certain sense, maps the structure of A onto that of B. Formally:

2In the definition below, |A|n is the n-fold Cartesian product of |A| with itself: that is, the set of ordered
n-tuples of elements of |A|.
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Definition 3. Let A and B be two ⌃-models. A homomorphism h : A ! B is a function
h : |A| ! |B| such that for every predicate-symbol ⇧(n) 2 ⌃, and any a1, . . . , an 2 |A|,

If ha1, . . . , ani 2 ⇧A, then hh(a1), . . . , h(an)i 2 ⇧B (1.1)

�

When two models are homomorphic to one another, there is a certain kind of ‘struc-
tural resemblance’ between them—but it’s reasonably weak. However, we can strengthen
it in successive degrees. First, the definition of homomorphism requires only a left-to-
right implication. If we also require the right-to-left implication to hold, and require
that it hold of all atomic formulae (including those using the equality-symbol), then we
obtain the notion of embedding:3

Definition 4. An embedding h : A ! B is an injective function h : |A| ! |B| such that
for every predicate-symbol ⇧(n) 2 ⌃, and any a1, . . . , an 2 |A|,

ha1, . . . , ani 2 ⇧A iff hh(a1), . . . , h(an)i 2 ⇧B (1.2)

�

Finally, recall that f : X ! Y is surjective if for any y 2 Y, there is some x 2 X such
that f (x) = y; a function which is both injective and surjective is bijective. This enables
us to state the strongest kind of relationship between models that we will be interested
in:

Definition 5. An isomorphism h : A ! B is a surjective embedding. That is, it is a
bijective function h : |A| ! |B| such that for every predicate-symbol ⇧(n) 2 ⌃, and any
a1, . . . , an 2 |A|,

ha1, . . . , ani 2 ⇧A iff hh(a1), . . . , h(an)i 2 ⇧B (1.3)

�

An isomorphism between a Tarski-model and itself is known as an automorphism.
For any Tarski-model, the identity map on its domain is an automorphism; but many
Tarski-models also possess ‘non-trivial’ automorphisms, i.e., automorphisms which are
not the identity map.

The notion of isomorphism seems to naturally capture a notion of ‘structural iden-
tity’, that is, of what it is for two Tarski-models to have ‘the same structure’. (Note that

3Recall that a function f : X ! Y is injective if for any x1, x2 2 X, if x1 6= x2 then f (x1) 6= f (x2).
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I only say it captures a notion of structural identity; as we shall explore, there are other
ways of capturing that idea that we should also investigate.) After all, at least intu-
itively: from the existence of a bijective function, we can infer that the domains of the
two models have the same number of elements; and the condition (1.3) indicates that
the extensions of the various symbols in ⌃ are ‘distributed’ over those elements in the
same way.

As a result, if a given formula � holds of a certain n-tuple in A, then that same formula
� will hold of that n-tuple’s image under h in B. In other words, an isomorphism
preserves the satisfaction of formulae. However, the converse to this is not true: it is
possible for a homomorphism to preserve the satisfaction of formulae without being an
isomorphism. Such a homomorphism is known as an elementary embedding; formally,

Definition 6. An elementary embedding h : A ! B is a function h : |A| ! |B| such that
for any n-place ⌃-formula � and any a1, . . . , an 2 |A|,

If A |= �[a1, . . . , an], then B |= �[h(a1), . . . , h(an)] (1.4)

�

The notion of elementary embedding is also of great model-theoretic significance: in-
deed, as we will discuss in Chapter 12, there are good reasons for thinking that elemen-
tary embeddings, rather than homomorphisms, should be thought of as the structure-
preserving mappings in the context of model theory.

However, we can also think about relationships between models of different signa-
tures; indeed, such relationships will be our main concern in the remainder of this chap-
ter. For example, suppose that we have two signatures ⌃ and ⌃+, such that ⌃ ⇢ ⌃+.
Then, given any ⌃+-model A, the reduct of A to ⌃ is, intuitively, what we get by ‘for-
getting’ the extensions of all those predicate-symbols that are in ⌃+ but not in ⌃. More
formally,

Definition 7. Let ⌃ ⇢ ⌃+, and let A be a ⌃+-model. The reduct of A to ⌃ is denoted by
A⌃, and is defined as follows: the domains are identical (i.e. |A⌃| = |A|), and for any
⇧ 2 ⌃,

⇧A⌃ = ⇧A (1.5)

�

The converse notion to reduct is that of expansion.

Definition 8. Let ⌃ ⇢ ⌃+, let A be a ⌃+-model, and let B be a ⌃-model. A is an
expansion of B to ⌃+ if A⌃ = B. �
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1.3. Definability

I remarked earlier that isomorphism provides a certain natural sense of structural iden-
tity. On this basis, we might argue that two mathematical representations should be
thought of as possessing the same structure just in case they are isomorphic to one an-
other. But taken literally, this criterion is far too restrictive. For, strictly speaking, no
two models of different signatures can be isomorphic to one another. So, for example, a
strict linear order with five elements that represents the order relation using the symbol
< is not isomorphic to a strict linear order with five elements that represents the order
relation using the symbol �. But it would be very strange to think of these two models
as having different structures—the difference between them is merely notational.

However, this might seem an unduly uncharitable construal of the proposal. When
philosophers talk about isomorphism, they often seem to have a less literal understand-
ing of the notion of isomorphism: one which requires only that the number and distri-
butions of the extensions over the models are the same, independently of what those
extensions are labelled. Following Lutz (2015), we will refer to this more liberal notion
as H-isomorphism:4

Definition 9. Let A be a ⌃1-model, and let B be a ⌃2-model. An H-isomorphism consists
of a bijection h : A ! B and a bijection k : ⌃1 ! ⌃2 such that for any ⇧(n) 2 ⌃1 and
any a1, . . . , an 2 |A|,

ha1, . . . , ani 2 ⇧A iff hh(a1), . . . , h(an)i 2 k(⇧)B (1.6)

�

Nevertheless, a little reflection suggests that this is still too restrictive a notion of
isomorphism. Consider first the standard model of the natural numbers, equipped
with extensions for zero, successor, addition, and multiplication. Call this model M.
Now consider the standard model of the natural numbers, equipped with extensions
for zero, successor, addition, multiplication, and evenness. Call this model N. M and N

are not H-isomorphic: there is no bijection between their signatures, since those contain
four and five symbols respectively. And yet, it is natural to feel that M and N have
the same structure. After all, it is not as though the notion of evenness is somehow
‘missing’ in M, just because M does not come equipped with a special label for it. The
only difference, we want to say, between M and N is that some piece of structure which
is implicitly present in M has been bestowed with a specific name in N.

4So-called since it plays a role in Halvorson (2012)’s argument against the semantic view of theories.
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We can make this notion of ‘implicit structure’ precise through the concept of defin-
ability. Intuitively, a certain collection of elements, or of tuples, is definable if it consists
of precisely those elements that match a certain description. More formally:

Definition 10. Let A be a ⌃-structure. A set X ✓ |A|n is definable in A if there is some
⌃-formula �(x1, . . . , xn) such that

ha1, . . . , ani 2 X iff A |= �[a1, . . . , an] (1.7)

�

For example, the set of even numbers is definable in M, being definable by the (one-
place) formula

9y(y + y = x) (1.8)

If we accept the idea that the definable sets should be considered an (implicit) part of a
Tarski-model’s ‘structure’, then this also suggests regarding two models as having the
same structure when the extensions of one model are definable in the other. We make
this precise via the notion of codetermination of models:5

Definition 11. Let A be a ⌃-model and let B be a T-model. A and B are codeterminate
if:

• |A| = |B|;

• for every ⇧ 2 ⌃, ⇧A is definable in B; and

• for every ⌦ 2 T, ⌦B is definable in A.

�

We can shed further light on definability by reflecting on its relationship to invari-
ance. A set of elements (or tuples) in a Tarski-model is invariant if it is ‘fixed’ by all
automorphisms of that model, that is:

Definition 12. Let A be a ⌃-structure. A set X ✓ |A|n is invariant in A if, for any
automorphism h : A ! A, and any a1, . . . , an 2 |A|,

ha1, . . . , ani 2 X iff hh(a1), . . . , h(an)i 2 X (1.9)

�
5See Barrett (nd), Winnie (1986).
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Thus, for example, the extension of any predicate in ⌃ is guaranteed to be invariant
(by the definition of automorphism). More generally, it turns out that the extension of
any formula whatsoever is invariant: that is,

Theorem 1. Let A be a ⌃-structure. For any set X ✓ |A|n, if X is definable then X is invariant.

Proof. Left as exercise.

However, the converse is not true: not all invariant sets are definable. For example,
consider again the natural numbers (whether in the form of the model M or the model
N). This model is rigid, in that it possesses no non-trivial automorphisms. As a result,
every subset in the domain is invariant. Since there are @0-many natural numbers, there
are 2@0 -many such subsets. But the signature is finite, and so there can only be at most
@0-many formulae (since each formula is itself a finite construction); and hence, only at
most @0-many definable subsets. That said, although in general a model might contain
sets that are both indefinable and invariant, there is a partial result:

Theorem 2. Let A be a finite ⌃-structure. For any set X ✓ |A|n, if X is invariant then X is
definable.

Proof. Left as exercise.

Note a corollary: if A is finite and rigid, then every subset of |A| (or of |A|n, for any
n) is definable.
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2. Theories

In the previous section, we looked at structure and equivalence between Tarski-models.
In this section, we turn our attention to these concepts within the realm of theories.
‘Theory’ here will be meant in the usual sense of model theory:

Definition 13 (First-order theory). Let ⌃ be a signature. A ⌃-theory T is a set of ⌃-
sentences. �

Definition 14 (Model of a theory). Let T be a ⌃-theory. A ⌃-model A is a model of T if,
for every sentence � 2 T, A |= �. �

Definition 15 (Consequence). Let T be a ⌃-theory. A ⌃-sentence � is a consequence of
T if, for every model A of T, A |= �. In such a case, we say that T entails �, and write
T ✏ �; if  is a consequence of {�}, then we write � ✏  .1 �

We will denote the class of models of T by Mod(T). Within philosophy of science,
there has been a great deal of discussion of the respective merits of the syntactic view
of theories (roughly, that theories are sets of sentences) and the semantic view of theories
(roughly, that theories are classes of models). The definition of a theory as a set of
sentences is not intended to take a side on this debate, which may not be trading on
quite such a sharp distinction as its protagonists suppose.2 Any set of sentences brings
a class of models in its wake, so any theory on the syntactic view will correspond to
some theory on the semantic view; and although not any class of Tarski-models will be
the class of models of some theory, many of the most interesting such classes are.3

1Note that the symbols for satisfaction and consequence are unfortunately similar: the former is |=,
whilst the latter is ✏. The easiest way to distinguish them is to look at what is on the left-hand-side of
the symbol: if it is a ⌃-model, then the relation is satisfaction; if it is a theory (or sentence), the relation
is consequence.

2See, for instance, Lutz (2015).
3More specifically, if a class K of ⌃-models is closed under isomorphism (i.e. if a model A is in K, then

so is any model isomorphic to A) and also closed under both ‘ultraproducts’ and ‘ultraroots’ (whose
definition is too complex for a footnote), then there is some ⌃-theory T such that K = Mod(T). See
(Hodges, 1993, §9.5).
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2.1. Translations between theories

What is it for two theories to be equivalent, i.e., to posit the same structure? The strictest
criterion of equivalence that one might consider is that of identity: two theories are
equivalent if they consist of the same sentences. Although this is surely a sufficient
condition for equivalence, it seems overly restrictive. For instance, this criterion would
consider the theories {9xPx} and {9x¬¬Px} to be inequivalent.4

A more relaxed condition is that of logical equivalence. For our purposes, this means
having the same models:

Definition 16 (Logical equivalence). Let T1 and T2 be ⌃-theories. T1 and T2 are logically
equivalent if Mod(T1) = Mod(T2): that is, if for every ⌃-model A, A is a model of T1 iff
A is a model of T2. �

There’s a natural relationship between isomorphism (as a criterion of equivalence be-
tween models) and logical equivalence (as a criterion of equivalence between theories),
expressed by the following proposition.

Proposition 1. Let T1 and T2 be ⌃-theories. T1 and T2 are logically equivalent iff for
every model A1 of T1, there is an isomorphic model A2 of T2.

Proof. Left as exercise.

In the previous section, we discussed the weaker notion of H-isomorphism, as a less
language-dependent version of isomorphism. The corresponding notion for theories
would be two theories that are logically equivalent ‘up to a choice of notation’; we shall
say that two theories related in this fashion are notational variants of one another.

Definition 17. Let T1 be a ⌃1-theory, and let T2 be a ⌃2-theory. T1 and T2 are notational
variants of one another if there is an arity-preserving bijection k : ⌃1 ! ⌃2 such that
k(T1) is logically equivalent to T2, where k(T1) is the result of replacing every occurrence
of any P 2 ⌃1 in T1 with k(P). �

However, as a criterion of equivalence, notational variance is still very strict. In the
previous chapter, we considered a further weakening from H-isomorphism, namely
codetermination. This motivates us to consider a weaker kind of relationship between
theories: that we can offer a translation between them.5

4If we had required that a theory be a set of sentences closed under entailment (so that if T ✏ � then � 2 T),
then the identity criterion would coincide with the criterion of logical equivalence.

5For more detail on translations between theories, see (Halvorson, 2019, chap. 4).
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The basic idea of translating one theory into another is that we can systematically
replace expressions of the first theory’s language by expressions of the second theory’s
language, in such a way that all theorems of the first theory are converted into theorems
of the second theory. More precisely,

Definition 18 (Translation between theories). Let T1 be a ⌃1-theory, and T2 a ⌃2-theory.
A translation from T1 to T2 is a map ⌧ : Form(⌃1) ! Form(⌃2), which:

1. Preserves variables: if the ⌃1-formula � has exactly the variables ⇠1, . . . , ⇠n free,
then ⌧ (�) has exactly ⇠1, . . . , ⇠n free.

2. Commutes with substitution: for any ⌃1-formula � with the variables ⇠1, . . . , ⇠n

free, and any variables ⌘1, . . . , ⌘n,

⌧ (�(⌘1/⇠1, . . . , ⌘n/⇠n)) = ⌧ (�)(⌘1/⇠1, . . . , ⌘n/⇠n) (2.1)

3. Commutes with the logical connectives: for any ⌃1-formulae � and  , and any
variable ⇠,

⌧ (¬�) = ¬⌧ (�) (2.2)

⌧ (�^  ) = ⌧ (�) ^ ⌧ ( ) (2.3)

⌧ (8⇠�) = 8⇠⌧ (�) (2.4)

etc.

4. Preserves consequence: for any ⌃1-formula �,

If T1 ✏ � then T2 ✏ ⌧ (�) (2.5)

�

When ⌧ is a translation from T1 to T2, we will write ⌧ : T1 ! T2. Since a translation
is required to commute with substitution and the logical connectives, we can specify
such a translation just by specifying, for every ⇧(n) 2 ⌃1, how to translate ⇧x1 . . . xn. In
what follows, this is how we will usually specify translations.

How does the existence of a translation from one theory to another relate to the struc-
tures posited by the two theories? We can get some insight here by reflecting on how it
is reflected in the relationships between the theories’ classes of models. The key obser-
vation here is that a translation ⌧ from one theory to another induces a ‘dual map’ ⌧ ⇤
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from the models of the latter theory to those of the former (so the dual map goes ‘in the
other direction’ from the translation).

Definition 19 (Dual map to a translation). Let ⌧ be a translation from the ⌃1-theory T1

to the ⌃2-theory T2. Given any ⌃2-model A, we define the ⌃1-model ⌧ ⇤(A) as follows.
First, the domain of ⌧ ⇤(A) is the same as that of A, that is, |⌧ (A)| = |A|. Second, for any
⇧(n) 2 ⌃1, we define the extension of ⇧ in ⌧ ⇤(A) as follows: for any a1, . . . , an 2 |A|,

ha1, . . . , ani 2 ⇧⌧ ⇤(A) iff A |= ⌧ (⇧)[a1, . . . , an] (2.6)

For any model A of T2, ⌧ ⇤(A) is a model of T1 (see Proposition 3 below). So ⌧ ⇤ is a
function from Mod(T1) to Mod(T2), which we refer to as the dual map to the translation
⌧ . �

To prove the claim used in this definition—that if A is a model of T2, then ⌧ ⇤(A) is a
model of T1—we need the following useful proposition.

Proposition 2. Let ⌧ be a translation from the ⌃1-theory T1 to the ⌃2-theory T2. For any
⌃2-model A, and any ⌃1-sentence �,

⌧ ⇤(A) |= � iff A |= ⌧ (�) (2.7)

Proof. By induction on the length of formulae; left as exercise.

Given this proposition, the proof that the dual map to a translation preserves model-
hood is straightforward.

Proposition 3. Let ⌧ be a translation from the ⌃1-theory T1 to the ⌃2-theory T2. If A is a
T2-model, then ⌧ ⇤(A) is a T1-model.

Proof. Suppose, for reductio, that ⌧ ⇤(A) is not a T1-model. Then there must be some
sentence � 2 T1 such that ⌧ ⇤(A) 6|= �. Then by Proposition 2, A 6|= ⌧ (�). Since A is a
T2-model, it follows that T2 6✏ ⌧ (�). But by the definition of a translation, T2 ✏ �; so by
contradiction, ⌧ ⇤(A) must be a T1-model.

Now, let us consider the question of how the notion of translation could be used to
articulate a criterion of equivalence. The mere existence of a translation (as defined
here) would be a very weak condition, and would have some very counter-intuitive
consequences: it would mean, for example, that any theory would be equivalent to
any strictly stronger theory (since inclusions are always translations)—indeed, that any
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theory is equivalent to some inconsistent theory! A more plausible criterion is to require
the existence of a pair of translations. This criterion is known as mutual interpretability.

Definition 20. Let T1 and T2 be theories of signatures ⌃1 and ⌃2 respectively. T1 and T2

are mutually interpretable if there exist translations ⌧ : T1 ! T2 and � : T2 ! T1. �

However, mutual interpretability is still a relatively weak notion, as the following
examples indicate.

Example 1. Let ⌃1 = {P(1)}, and let ⌃2 = {Q(1), R(1)}. Let

T1 = ? (2.8)

T2 = {8x(Qx ! Rx)} (2.9)

One would expect that T1 and T2 should not be regarded as equivalent: intuitively,
T2 says something non-trivial, whereas T1 does not. Yet T1 and T2 are mutually inter-
pretable, since

⌧ (Px) = Qx (2.10)

is a translation from T1 to T2, and

�(Qx) = Px (2.11)

�(Rx) = Px (2.12)

is a translation from T1 to T2.

In light of this, we introduce a yet stronger condition: not just that there exist a pair
of translations, but that those translations be, in a certain sense, inverse to one an-
other. The intuition here is that if we take some expression of our first theory’s lan-
guage, translate it into the second language, and then translate it back into the first lan-
guage, we should—if the pair of translations really express an equivalence between the
theories—get an expression with the same meaning as the expression with which we
began. Formally, we cash out this condition of ‘having the same meaning’ as ‘equiva-
lent modulo the ambient theory’; the resulting criterion is known as intertranslatability.6

Definition 21. Let T1 and T2 be theories of signatures ⌃1 and ⌃2 respectively. T1 and T2

are intertranslatable if there exist translations ⌧ : T1 ! T2 and � : T2 ! T1, such that for

6Barrett and Halvorson (2016a)
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any ⌃1-formula �(x1, . . . , xn) and any ⌃2-formula  (y1, . . . , ym),

T1 ✏ 8x1 . . . 8xn(�$ �(⌧ (�))) (2.13)

T2 ✏ 8y1 . . . 8ym( $  (�( ))) (2.14)

In such a case, we will say that ⌧ and � are inverse translations to one another. �

Where we are dealing with a pair of inverse translations of this kind, we will often
express them by writing

⇧x1 . . . xn ⌘ ⌧ (⇧x1 . . . xn) (2.15)

for every ⇧ 2 ⌃1, and
⌦y1 . . . ym ⌘ �(⌦y1 . . . ym) (2.16)

for every ⌦ 2 ⌃2. Thus, the symbol ⌘ will typically have expressions from two different
languages on either side of it.

In general, if we have a theory T1, then its image ⌧ [T1] under a map ⌧ : Form(⌃1) !
Form(⌃2) is not intertranslatable with T1, even if we suppose that ⌧ preserves free vari-
ables, and that it commutes with substitution and the logical connectives.7 However, if
⌧ is ‘suitably invertible’, then this does hold. More precisely:

Proposition 4. Suppose that the translations ⌧ : T1 ! T2 and � : T2 ! T1 are inverse
to one another. Then T2 is logically equivalent to ⌧ [T1], and T1 is logically equivalent to
�[T2].

Proof. Suppose that there were some model B of T2 which was was not a model of ⌧ [T1].
Then for some � 2 T1, f B 6|= ⌧ (�); but then it follows that T2 6✏ ⌧ (�), which contradicts
the assumption that ⌧ is a translation. The other case is proven similarly.

In particular, take as given some ⌃1-theory T1, and suppose that ⌧ : Form(⌃1) !
Form(⌃2) and � : Form(⌃2) ! ⌃1) preserve free variables, commute with substitu-
tion and the logical connectives. If �(⌧ (�)) is logically equivalent to � and ⌧ (�( )) is
logically equivalent to  (for every � 2 Form(⌃1) and  2 Form(⌃2)), then T1 is in-
tertranslatable with ⌧ [T1]; this also holds if we have equivalence with respect to some
background theory, rather than full logical equivalence. We will employ this observa-
tion in Part II.

Finally, we observe that intertranslatability is associated with codetermination be-
tween classes of models in a natural way.

7See Barrett and Halvorson (2016a).
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Proposition 5. If ⌧ : T1 ! T2 and � : T2 ! T1 are inverse translations, then:

• for any A 2 Mod(T1), A is codeterminate with �⇤(A), and ⌧ ⇤(�⇤(A)) = A; and

• for any B 2 Mod(T2), B is codeterminate with ⌧ ⇤(B), and �⇤(⌧ ⇤(B)) = B.

Proof. Left as exercise.

This suggests that intertranslatability is a fairly natural criterion for equivalence be-
tween theories. That said, we should bear in mind that all we have discussed here
are criteria of formal equivalence: roughly, of two theories having the same form, in-
dependently of their content. However, merely being of the same form is manifestly
insufficient for two theories to be equivalent in the full sense of ‘saying the same thing’.
For example, as Sklar (1982) famously observes, the two theories ‘all lions have stripes’
and ‘all tigers have stripes’ are intertranslatable but do not say the same thing. So we
should bear in mind that formal criteria like those discussed in this chapter (and, to
some extent, the whole of this book) can only be a partial guide to theoretical equiva-
lence.
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3. Ramsey sentences

We’ve now seen some of the ways in which we can use the resources of model theory to
articulate different senses of equivalence between models and theories. In the course of
doing this, I have made occasional remarks about how these different notions of equiv-
alence might be thought to capture different notions of ‘structure’, in the sense that
they point to different ways of understanding the claim that two models, or two theo-
ries, have the same structure. However, there is an alternative way of approaching the
relationship between the notions of structure and equivalence: rather than using equiv-
alences to reveal structure, one can seek to articulate a notion of ‘structure’ directly, and
then use that to formulate a criterion of equivalence. In this section, we consider one
well-known proposal for the ‘structural content’ of a theory: that this content can be
identified with the theory’s Ramsey sentence.

3.1. Second-order logic

As we shall see, the Ramsey sentence of a first-order theory is a second-order sentence;
so we begin by reviewing the formalism of second-order logic. In second-order logic,
we can—as people say—quantify into predicate position. Intuitively, this means that we
can make quantified claims about properties (and relations): so rather than being lim-
ited to saying things like ‘all whales are mammals’, we can now say things like ‘any-
thing which is true of all mammals is true of all whales’, or ‘there are some properties
which whales and dolphins both have’.

More formally, then, second-order logic is distinguished from first-order logic by
having not only a stock Var of first-order variables x, y, z, . . . , but also a stock VAR of
second-order variables X, Y, Z, . . . . Like predicates, every second-order variable has an
associated arity n 2 N. And as with predicates, we will indicate the arity of a second-
order variable (where helpful) by a parenthesised superscript, thus: X(n). The subset of
VAR containing all the n-ary variables will be denoted VARn.

Other than this, the symbolic vocabulary of second-order logic is the same as that of
first-order logic: we have the equality-symbol, the logical connectives, the quantifiers,
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and a signature ⌃ consisting of predicates (of various arities). The rules for forming
well-formed formulae are the same as for first-order logic, but with two additional
clauses:

• If X(n) 2 VAR, and if x1, . . . , xn 2 Var, then Xx1 . . . xn is a formula

• If  is a formula, and X 2 VAR, then 8X is a formula

Respectively, these clauses tell us that the new variables can go into predicate position,
and that they can be quantified over. As with the first-order case, we will use p_q, p!q
and p9q as abbreviations (so 9X abbreviates ¬8X ).

We now turn to the standard semantics of second-order logic.1 As with the first-
order case, we use Tarski-models: for signature ⌃, a ⌃-model A consists of a set A

equipped with extensions for all predicates in ⌃. Given a ⌃-model A, a second-order
variable-assignment G for A consists of a map g : Var ! |A|, and for every n 2 N, a map
Gn : VARn ! P(|A|n). Here, P(|A|n) is the power set of |A|n, i.e. the set containing all
subsets of |A|n; thus, for any ⌅(n) 2 VAR, Gn(⌅) is some set of n-tuples from |A|.

Now let � be some second-order ⌃-formula, let A be a ⌃-model, and let G be a second-
order variable-assignment. Truth is then defined in the same way as in the first-order
case, but with two extra clauses (corresponding to the two new clauses for formulae):

• For any ⌅(n) 2 VAR and any ⇠1, . . . , ⇠n 2 Var,

A |=G X(n)x1 . . . xn iff hg(x1), . . . , g(xn)i 2 Gn(⌅) (3.1)

• A |=G 8X(n)� iff for all A ✓ |A|n, A |=GX
A
�

where the variable-assignment GX
A is defined by the condition that

GX
A(Y) =

8
<

:
G(Y) if Y 6= X

A if Y = X
(3.2)

We then say that a sentence � is true relative to a Tarski-model A if, for every variable-
assignment G over A, A |=G �. In this case, we write A |= �. Consequence is defined
and denoted as in the first-order case.

1See (Shapiro, 1991, §4.2) or Manzano (1996) for more detailed treatments.
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3.2. Ramseyfication

We can now turn our attention to the Ramsey sentence itself. The intuitive idea is that
the ‘structural core’ of a theory T will make the same structural claims about the world
as T, but without committing itself to which properties or relations it is that instantiate
that structure. Thus, if a theory says something like ‘positively charged particles repel
one another’, the structural claim thereby expressed is merely ‘there is a property, such
that any two particles possessing that property will repel one another’. One might ob-
ject that even this does not go far enough, since it still speaks of ‘repulsion’; or, one
might distinguish between charge and repulsion on the basis that the notion of repul-
sion, unlike that of positive charge, is associated with a direct empirical content. In the
first instance we will take the latter attitude, since the former (more extreme) view can
be recovered as a special case.

Thus, suppose that our non-logical vocabulary ⌃ is divided into two classes, ⌦ and
⇥: intuitively speaking, we suppose that ⌦ is the collection of ‘observational’ predi-
cates (like ‘repulsion’), while ⇥ is the collection of ‘theoretical’ predicates (like ‘positive
charge’). Suppose further that the theory T we are interested in (which is formulated in
⌃) consists only of finitely many sentences; without loss of generality, we can suppose
that T consists of a single sentence.2

We first form a ‘skeleton’ theory T⇤, by replacing all the theoretical predicates that oc-
cur in T by second-order variables (of the appropriate arity): that is, if only R1, . . . , Rp 2
⇥ occur in T, then

T⇤ = T[X1/R1, . . . , Xp/Rp] (3.3)

where for each i, Xi is of the same arity as Ri. We then form the Ramsey sentence of T
by existentially quantifying over all of these predicates:

TR = 9X19X2 . . . 9XpT⇤ (3.4)

We take the signature of the Ramsey sentence to be ⌃ (even though the sentence itself
only contains predicates from ⌦).

We can now ask the question: how much of a theory’s structure does the Ramsey
sentence capture? To answer this, first define the observational reduct of any ⌃-model A

2In principle, we could apply the Ramseyfication procedure to a theory which consisted of infinitely
many sentences. However, we would need the second-order language of TR to be an infinitary second-
order language: if T contained -many sentences, and if �-many predicates from ⇥ occur in T, then TR

must be in a language that permits -size conjunction, and which admits the introduction of �-many
second-order quantifiers. In order to not have to deal with these complications, we will suppose that
the original theory is finite.
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to be its reduct A⌦ to ⌦. Second, let W be a first-order model of signature ⌃ which is
a faithful representation of the world: i.e., which has the observational and theoretical
predicates distributed over its elements in just the way that the corresponding obser-
vational and theoretical properties are distributed over the objects of the world. If this
formulation makes you uncomfortable (which it probably should), then just think of W
as a ‘preferred model’, without worrying about in virtue of what it is preferred. We’ll
say that a ⌃-theory is true if W is one of its models; that it is observationally adequate if
it has some model whose observational reduct is identical to W⌦; and that it is numer-
ically adequate if it has some model whose domain coincides with |W|. Intuitively: a
theory which is true admits a model which matches the actual number of objects, and
the actual distribution of observational and theoretical properties over those objects;
a theory which is observationally adequate admits a model which matches the actual
number of objects, and the actual distribution of observational properties over those
objects; and a theory which is numerically adequate admits a model which matches the
actual number of objects3.

This enables us to now make the following observation: for any ⌃-theory T, its Ram-
sey sentence TR is true just in case T is observationally adequate.4 More formally:

Proposition 6. Let T be a theory of signature ⌃, and let TR be the Ramsey sentence of
T. Then W |= TR if and only if T is observationally adequate (i.e., there is some model
A of T such that A⌦ = W⌦).

Proof. First, suppose that W |= TR: that is, that

W |= 9X1 . . . 9XpT⇤ (3.5)

This is true just in case there is some second-order variable-assignment G for W such
that

W |=G T⇤ (3.6)

3Bear in mind here that W is merely supposed to be a ‘faithful representative’ of the world, not ‘the
world itself’ (whatever, exactly, these terms might mean). So it’s harmless to define observational
adequacy as the theory admitting a model identical to W⌦ (not just isomorphic to it), and to define
numerical adequacy as the theory admitting a model with the same domain identical to |W| (not just
equinumerous with it)

4(Ketland, 2004, Theorem 2)
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But now consider the model A, defined as follows:

|A| = |W|
PA = PW, for every P 2 ⌦

RA

i = G(Xi), for every Ri 2 ⇥

A proof by induction shows that
A |= T (3.7)

But by construction, A⌦ = W⌦. So T is observationally adequate.
Second, suppose that T is observationally adequate: i.e., that there is some model

A of T such that A⌦ = W⌦. Consider any second-order variable-assignment G for A

satisfying the condition that for every Ri 2 ⇥,

G(Xi) = RA

i (3.8)

Since |A| = |W|, we can regard G as a variable-assignment for W. Then, again, a proof
by induction shows that

W |=G T⇤ (3.9)

from which it follows immediately that W |= TR.

We also have the following corollary, which applies to the more radical view can-
vassed above (that the use of all predicates, not just the ‘theoretical’ ones, should be
converted to existential quantifications).

Corollary 1. Suppose that ⇥ = ? (equivalently, that ⌃ = ⌦); that is, consider the
case where we Ramsefy away all the vocabulary. Then W |= TR if and only if T is
numerically adequate (i.e., there is some model A of T such that |A| = |W|).

Philosophically, this observation is usually taken as a problem for the proposal that
a theory’s structure is captured by its Ramsey sentence: simply put, the concern is that
Proposition 6 shows that the Ramsey sentence fails to capture anything about a theory
beyond its empirical or observational content.5 So if we do indeed take the ‘structure’
of a theory to be that which is captured by its Ramsey sentence, then we appear to

5In the literature, this objection is referred to as ‘Newman’s objection’, since a version of this objection
was discussed in Newman (1928). (Note that this is before the introduction of the Ramsey sentence in
Ramsey (1931)—even allowing for the fact that Ramsey’s essay was written in 1929. The reason for
this is that Newman’s objection was, originally, offered as a criticism of Russell (1927), and only later
applied to the Ramsey-sentence approach to theories.)
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have the corollary that a theory simply has no non-observational structure. Moreover,
there is something faintly paradoxical to this, insofar as the observational predicates
were precisely the ones that we did not Ramseyfy. So the Ramsey-sentence approach to
structure seems to hold that although the Ramsey sentence of a theory articulates that
theory structure, the only structure a theory in fact possesses is expressed by that part
of the theory’s language which is not subject to Ramseyfication!

If the Ramsey sentence is taken as expressing a theory’s structure, then it is natural
to take two theories as equivalent if they have logically equivalent Ramsey sentences.
A further way of thinking about Newman’s objection is to observe that, if we use stan-
dard second-order semantics, then this criterion of equivalence degenerates into obser-
vational equivalence. More precisely, let us say that two first-order ⌃-theories, T1 and
T2, are observationally equivalent if for every model A of T1, there is some model B of T2

such that A⌦ is isomorphic to B⌦, and vice versa. Then:

Proposition 7. T1 and T2 are observationally equivalent if and only if, with respect to
standard second-order semantics, their Ramsey sentences are logically equivalent.

Proof. Left as exercise.

What can be said in response? One option is to bite the bullet, and argue that—in
fact—it is good that a theory’s structure should turn out to be exhausted by its observa-
tional structure. In other words, the Ramsey sentence can be regarded as a useful vehi-
cle for expressing a (fairly strong) form of empiricism about scientific theories: it offers
one way of making precise the idea that the real content of a scientific theory is its obser-
vational or empirical ‘core’. This is, roughly speaking, the attitude that Carnap (1958)
took in advocating the Ramsey sentence as expressing the ‘synthetic part’ of a theory,
with the ‘analytic part’ expressed by the so-called Carnap sentence, TC = (TR ! T).6

For non-empiricists, it is less clear what the best response is. One option is to ar-
gue that the way we have formalised the Ramsey sentence failed to capture the intu-
itive idea. In particular, note that our intuitive gloss above quantified over properties,
whereas the standard semantics for second-order logic permits the second-order vari-
ables to range over arbitrary subsets of the domain. So one might argue that the Ramsey-
sentence approach to structural content should use some other semantics for second-
order logic, where the range of the second-order quantifiers is somehow restricted.

A natural way of doing this is to use so-called Henkin semantics. In a Henkin model
H, for each n 2 N a subset of P(|H|n) is picked out as the permitted range for the

6For commentary and discussion, see Psillos (2000) or Andreas (2017).
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second-order n-ary variables to range over.7 This suffices to avoid the Newman objec-
tion; however, it turns out that this still captures a relatively weak notion of structural
content. In particular, Dewar (2019a) shows that two theories T1 and T2 have logically
equivalent Ramsey sentences under Henkin semantics if there exist translations from
T1 to T2 and vice versa (without any requirement that these translations are inverse to
one another); and as Example 1 showed, this is a fairly weak notion of equivalence.

In sum, then, we’ve seen that the notion of ‘the structure of a theory’ is slippier than
one might expect, and admits of a variety of different formal explications. In particular,
we now have a hierarchy of criteria of equivalence, in descending order of strictness:

• Logical equivalence

• Notational variance

• Intertranslatability

• Mutual translatability

• Logically equivalent Ramsey sentences (on Henkin semantics)

• Logically equivalent Ramsey sentences (on standard semantics)

We now move away from logic, and turn to theories of physics; we will bear in mind the
lessons from these chapters, however, as guides to these more complex and interesting
cases.

7Moreover, we require that these privileged subsets are, in an appropriate sense, closed under definabil-
ity; see Manzano (1996) for details.
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Part II.

Newtonian mechanics
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