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Introduction

This is a book about structure in the representations of physics, about equivalence be-
tween such representations, and about the relationship between these two concepts. In
a slogan, that relationship is as follows: for two representations to be equivalent is for
them to posit the same structure, and the structure of a representation is that which
it has in common with equivalent representations. The question of which half of this
slogan is primary—that is, whether we should take equivalence to be a derivative no-
tion from structure, or the other way round—is the animating question behind much
of what follows. That said, the main aim of this book is not to answer that question,
but to introduce students to the tools and ideas that can, I think, be useful in seeking to
answer it.

The book is split into four parts, with each part comprising three chapters (with each
of the twelve chapters being roughly the same length). Part I looks at issues of structure
and equivalence in the context of formal, logical languages. Chapters 1 and 2 introduce
notions of definability and translation with regards to (respectively) models and theo-
ries of first-order languages, and how these notions can be used to make precise ideas
about equivalence, while Chapter 3 looks at whether Ramsey sentences provide a plau-
sible way of explicating the structure of such a theory. The goal is to lay some ideas
on the table, in the (admittedly artificial) context of formal languages, that we can use
in studying the more physics-oriented structures introduced subsequently. This part of
the book presumes familiarity with standard predicate logic.

Parts II and III engage most directly with questions of structure and equivalence as
they arise within physics, especially as concerns symmetries in physics. My original
intention was to write something much more general about symmetry and equivalence
in physics, with appositely chosen case studies to illustrate those general lessons. How-
ever, this ambition foundered on three problems: a strict word-count, the desire to make
this book even remotely pedagogically accessible, and the inverse relationship between
tractability and generality. So instead, I offer two case studies, and leave it to the reader
to consider how the lessons drawn from them might (or might not) generalise to other
theories.
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Thus, Part II is about N-particle Newtonian mechanics, and how its spacetime sym-
metries can be used as a way of recognising the presence of ‘surplus structure’ in repre-
sentations of this theory: Chapter 4 introduces the theory and its symmetries, Chapter
5 discusses the reasons for thinking symmetry-variant structure is surplus structure,
and Chapter 6 outlines how to formulate the theory without using such structure. Part
III takes up these questions about symmetry and surplus structure, but applied to the
symmetries of electromagnetism. These symmetries include both its spacetime sym-
metries (in Chapter 7) and its internal gauge symmetries (in Chapters 8 and 9). These
parts should be mostly accessible to readers provided they have some undergraduate-
level knowledge of physics, although some of the tools used are more abstract than one
would typically find in an undergraduate physics course. The appendices—on vector
and affine spaces, group theory, and differential forms—provide a guide to these tools,
although one more suitable for reference or refreshment than introduction.

Finally, Part IV discusses the use of category-theoretic tools to study structure and
equivalence: Chapters 10 and 11 introduce (respectively) categories and functors, and
Chapter 12 describes how to apply them to categories formed from theories—including
both the formal logical theories discussed in Part I, and the physical theories discussed
in Parts II and III. So, this part of the book also seeks to bring together the ideas artic-
ulated in the earlier parts of the book. It is also perhaps the part of the book that will
be most novel to students, at least to those coming from a philosophy or physics back-
ground; I hope, however, that it illustrates how the basic concepts, at least, are more
readily understandable than one might have expected.

[TO ADD: ACKNOWLEDGMENTS AND THANKS]

Munich, October 2020
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Part I.

Logic
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1. Models

We begin our investigations by looking at the structure of, and equivalence relations
between, models of first-order logic. This is a highly stylised context, especially if our
ultimate goal is an inquiry into structure and equivalence in physics: it is a common-
place that for most theories in physics, a presentation of those theories in first-order
logic is likely neither possible nor desirable. Nevertheless, as we will see, the first-
order case will prove to have complexities enough for us to start with; and it will teach
us some lessons that we can use when we turn to physics in the later chapters of this
book.

1.1. Review of first-order semantics

We begin with a brief review of the terminology and notation of standard first-order
model theory.1 The foundational concept here is that of a first-order language, which
consists of a logical vocabulary (common to all first-order languages) and a non-logical
vocabulary or signature (different for each first-order language). The logical vocabulary
comprises a set Var of variables, x1, x2, . . . , y1, y2, . . . , z1, z2, . . . ; the equality symbol p=q;
the negation, conjunction, disjunction and implication symbols p¬q, p∧q, p∨q and p→q;
and the universal and existential quantifiers p∀q and p∃q.

In general, a signature consists of both predicate-symbols and function-symbols.
However, we will confine ourselves to signatures that only contain predicate-symbols:
many of the notions in which we are interested (concerning definability and translata-
bility) are much easier to handle when we exclude function-symbols, and those same
notions demonstrate that any theory employing function-symbols is, in a certain sense,
equivalent to a theory that uses only relation-symbols. In an ideal world we would
have the space to investigate and discuss this notion of equivalence; but in this (as in so
many respects), the world is far from ideal. Thus:

1Much of the notation and conventions follow Hodges (1997).
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Definition 1. A signature consists of a set Σ of predicate-symbols (denoted by letters such
as P, Q, R, etc.), each of which is associated with a natural number known as its arity.

♠

So unary predicate-symbols (those which take a single argument) have an arity of
1; binary predicate-symbols (those which take two arguments, also known as binary
relation-symbols) have an arity of 2; and so on. Where appropriate, the arity of a symbol
will be indicated by adding a parenthetical superscript: to introduce R as a binary
predicate-symbol, for instance, we will write its first appearance as R(2).

Given a signature Σ, one can define the set Form(Σ) of well-formed Σ-formulae, using
the standard compositional rules of predicate logic. A variable in a formula is free if
it is not bound by any quantifier; we will use φ(ξ1, . . . , ξn) to denote a formula with
the variables ξ1, . . . , ξn free, and φ(η1/ξ1, . . . , ηn/ξn) to denote the result of uniformly
substituting ηi for ξi throughout such a formula. The set of Σ-sentences is the set of
closed Σ-formulae (formulae with no free variables).

The semantics for first-order model theory is given by Tarski-models. A Tarski-model
A for a language with signature Σ will be referred to as a Σ-model:2

Definition 2. A Σ-model consists of a set |A| (the domain of A), equipped with a subset
ΠA ⊆ |A|n (the extension of Π in A) for every Π ∈ Σ. ♠

A Tarski-model A determines truth-values for formulae, relative to an assignment of
elements of |A| to variables in Var, in the standard recursive fashion. If the formula φ
has the variables x1, . . . , xn free, and if A satisfies φ relative to the assignment of ai ∈ |A|
to xi, then we write A |= φ[a1, . . . , an]. If φ is a sentence, then the variable-assignment
no longer matters, and we write simply A |= φ.

1.2. Relationships between models

Most of the above should be familiar if you have taken a standard logic course before.
Here, however, we are interested in exploring the use of these ideas to make precise
concepts of structure and equivalence. For these purposes, it is very useful to start
thinking about the kinds of relationships that Tarski models can bear to one another.
First, for a given signature Σ, a homomorphism from a Σ-model A to another Σ-model B
is a map which, in a certain sense, maps the structure of A onto that of B. Formally:

2In the definition below, |A|n is the n-fold Cartesian product of |A| with itself: that is, the set of ordered
n-tuples of elements of |A|.
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Definition 3. Let A and B be two Σ-models. A homomorphism h : A → B is a function
h : |A| → |B| such that for every predicate-symbol Π(n) ∈ Σ, and any a1, . . . , an ∈ |A|,

If 〈a1, . . . , an〉 ∈ ΠA, then 〈h(a1), . . . , h(an)〉 ∈ ΠB (1.1)

♠

When two models are homomorphic to one another, there is a certain kind of ‘struc-
tural resemblance’ between them—but it’s reasonably weak. However, we can strengthen
it in successive degrees. First, the definition of homomorphism requires only a left-to-
right implication. If we also require the right-to-left implication to hold, and require
that it hold of all atomic formulae (including those using the equality-symbol), then we
obtain the notion of embedding:3

Definition 4. An embedding h : A → B is an injective function h : |A| → |B| such that
for every predicate-symbol Π(n) ∈ Σ, and any a1, . . . , an ∈ |A|,

〈a1, . . . , an〉 ∈ ΠA iff 〈h(a1), . . . , h(an)〉 ∈ ΠB (1.2)

♠

Finally, recall that f : X → Y is surjective if for any y ∈ Y, there is some x ∈ X such
that f (x) = y; a function which is both injective and surjective is bijective. This enables
us to state the strongest kind of relationship between models that we will be interested
in:

Definition 5. An isomorphism h : A → B is a surjective embedding. That is, it is a
bijective function h : |A| → |B| such that for every predicate-symbol Π(n) ∈ Σ, and any
a1, . . . , an ∈ |A|,

〈a1, . . . , an〉 ∈ ΠA iff 〈h(a1), . . . , h(an)〉 ∈ ΠB (1.3)

♠

An isomorphism between a Tarski-model and itself is known as an automorphism.
For any Tarski-model, the identity map on its domain is an automorphism; but many
Tarski-models also possess ‘non-trivial’ automorphisms, i.e., automorphisms which are
not the identity map.

The notion of isomorphism seems to naturally capture a notion of ‘structural iden-
tity’, that is, of what it is for two Tarski-models to have ‘the same structure’. (Note that

3Recall that a function f : X → Y is injective if for any x1, x2 ∈ X, if x1 6= x2 then f (x1) 6= f (x2).
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I only say it captures a notion of structural identity; as we shall explore, there are other
ways of capturing that idea that we should also investigate.) After all, at least intu-
itively: from the existence of a bijective function, we can infer that the domains of the
two models have the same number of elements; and the condition (1.3) indicates that
the extensions of the various symbols in Σ are ‘distributed’ over those elements in the
same way.

As a result, if a given formula φ holds of a certain n-tuple in A, then that same formula
φ will hold of that n-tuple’s image under h in B. In other words, an isomorphism
preserves the satisfaction of formulae. However, the converse to this is not true: it is
possible for a homomorphism to preserve the satisfaction of formulae without being an
isomorphism. Such a homomorphism is known as an elementary embedding; formally,

Definition 6. An elementary embedding h : A → B is a function h : |A| → |B| such that
for any n-place Σ-formula φ and any a1, . . . , an ∈ |A|,

If A |= φ[a1, . . . , an], then B |= φ[h(a1), . . . , h(an)] (1.4)

♠

The notion of elementary embedding is also of great model-theoretic significance: in-
deed, as we will discuss in Chapter 12, there are good reasons for thinking that elemen-
tary embeddings, rather than homomorphisms, should be thought of as the structure-
preserving mappings in the context of model theory.

However, we can also think about relationships between models of different signa-
tures; indeed, such relationships will be our main concern in the remainder of this chap-
ter. For example, suppose that we have two signatures Σ and Σ+, such that Σ ⊂ Σ+.
Then, given any Σ+-model A, the reduct of A to Σ is, intuitively, what we get by ‘for-
getting’ the extensions of all those predicate-symbols that are in Σ+ but not in Σ. More
formally,

Definition 7. Let Σ ⊂ Σ+, and let A be a Σ+-model. The reduct of A to Σ is denoted by
AΣ, and is defined as follows: the domains are identical (i.e. |AΣ| = |A|), and for any
Π ∈ Σ,

ΠAΣ
= ΠA (1.5)

♠

The converse notion to reduct is that of expansion.

Definition 8. Let Σ ⊂ Σ+, let A be a Σ+-model, and let B be a Σ-model. A is an
expansion of B to Σ+ if AΣ = B. ♠
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1.3. Definability

I remarked earlier that isomorphism provides a certain natural sense of structural iden-
tity. On this basis, we might argue that two mathematical representations should be
thought of as possessing the same structure just in case they are isomorphic to one an-
other. But taken literally, this criterion is far too restrictive. For, strictly speaking, no
two models of different signatures can be isomorphic to one another. So, for example, a
strict linear order with five elements that represents the order relation using the symbol
< is not isomorphic to a strict linear order with five elements that represents the order
relation using the symbol ≺. But it would be very strange to think of these two models
as having different structures—the difference between them is merely notational.

However, this might seem an unduly uncharitable construal of the proposal. When
philosophers talk about isomorphism, they often seem to have a less literal understand-
ing of the notion of isomorphism: one which requires only that the number and distri-
butions of the extensions over the models are the same, independently of what those
extensions are labelled. Following Lutz (2015), we will refer to this more liberal notion
as H-isomorphism:4

Definition 9. Let A be a Σ1-model, and let B be a Σ2-model. An H-isomorphism consists
of a bijection h : A → B and a bijection k : Σ1 → Σ2 such that for any Π(n) ∈ Σ1 and
any a1, . . . , an ∈ |A|,

〈a1, . . . , an〉 ∈ ΠA iff 〈h(a1), . . . , h(an)〉 ∈ k(Π)B (1.6)

♠

Nevertheless, a little reflection suggests that this is still too restrictive a notion of
isomorphism. Consider first the standard model of the natural numbers, equipped
with extensions for zero, successor, addition, and multiplication. Call this model M.
Now consider the standard model of the natural numbers, equipped with extensions
for zero, successor, addition, multiplication, and evenness. Call this model N. M and N

are not H-isomorphic: there is no bijection between their signatures, since those contain
four and five symbols respectively. And yet, it is natural to feel that M and N have
the same structure. After all, it is not as though the notion of evenness is somehow
‘missing’ in M, just because M does not come equipped with a special label for it. The
only difference, we want to say, between M and N is that some piece of structure which
is implicitly present in M has been bestowed with a specific name in N.

4So-called since it plays a role in Halvorson (2012)’s argument against the semantic view of theories.
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We can make this notion of ‘implicit structure’ precise through the concept of defin-
ability. Intuitively, a certain collection of elements, or of tuples, is definable if it consists
of precisely those elements that match a certain description. More formally:

Definition 10. Let A be a Σ-structure. A set X ⊆ |A|n is definable in A if there is some
Σ-formula φ(x1, . . . , xn) such that

〈a1, . . . , an〉 ∈ X iff A |= φ[a1, . . . , an] (1.7)

♠

For example, the set of even numbers is definable in M, being definable by the (one-
place) formula

∃y(y + y = x) (1.8)

If we accept the idea that the definable sets should be considered an (implicit) part of a
Tarski-model’s ‘structure’, then this also suggests regarding two models as having the
same structure when the extensions of one model are definable in the other. We make
this precise via the notion of codetermination of models:5

Definition 11. Let A be a Σ-model and let B be a T-model. A and B are codeterminate
if:

• |A| = |B|;

• for every Π ∈ Σ, ΠA is definable in B; and

• for every Ω ∈ T, ΩB is definable in A.

♠

We can shed further light on definability by reflecting on its relationship to invari-
ance. A set of elements (or tuples) in a Tarski-model is invariant if it is ‘fixed’ by all
automorphisms of that model, that is:

Definition 12. Let A be a Σ-structure. A set X ⊆ |A|n is invariant in A if, for any
automorphism h : A→ A, and any a1, . . . , an ∈ |A|,

〈a1, . . . , an〉 ∈ X iff 〈h(a1), . . . , h(an)〉 ∈ X (1.9)

♠
5See Barrett (nd), Winnie (1986).
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Thus, for example, the extension of any predicate in Σ is guaranteed to be invariant
(by the definition of automorphism). More generally, it turns out that the extension of
any formula whatsoever is invariant: that is,

Theorem 1. Let A be a Σ-structure. For any set X ⊆ |A|n, if X is definable then X is invariant.

Proof. Left as exercise.

However, the converse is not true: not all invariant sets are definable. For example,
consider again the natural numbers (whether in the form of the model M or the model
N). This model is rigid, in that it possesses no non-trivial automorphisms. As a result,
every subset in the domain is invariant. Since there are ℵ0-many natural numbers, there
are 2ℵ0-many such subsets. But the signature is finite, and so there can only be at most
ℵ0-many formulae (since each formula is itself a finite construction); and hence, only at
most ℵ0-many definable subsets. That said, although in general a model might contain
sets that are both indefinable and invariant, there is a partial result:

Theorem 2. Let A be a finite Σ-structure. For any set X ⊆ |A|n, if X is invariant then X is
definable.

Proof. Left as exercise.

Note a corollary: if A is finite and rigid, then every subset of |A| (or of |A|n, for any
n) is definable.
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2. Theories

In the previous section, we looked at structure and equivalence between Tarski-models.
In this section, we turn our attention to these concepts within the realm of theories.
‘Theory’ here will be meant in the usual sense of model theory:

Definition 13 (First-order theory). Let Σ be a signature. A Σ-theory T is a set of Σ-
sentences. ♠

Definition 14 (Model of a theory). Let T be a Σ-theory. A Σ-model A is a model of T if,
for every sentence φ ∈ T, A |= φ. ♠

Definition 15 (Consequence). Let T be a Σ-theory. A Σ-sentence φ is a consequence of
T if, for every model A of T, A |= φ. In such a case, we say that T entails φ, and write
T � φ; if ψ is a consequence of {φ}, then we write φ � ψ.1 ♠

We will denote the class of models of T by Mod(T). Within philosophy of science,
there has been a great deal of discussion of the respective merits of the syntactic view
of theories (roughly, that theories are sets of sentences) and the semantic view of theories
(roughly, that theories are classes of models). The definition of a theory as a set of
sentences is not intended to take a side on this debate, which may not be trading on
quite such a sharp distinction as its protagonists suppose.2 Any set of sentences brings
a class of models in its wake, so any theory on the syntactic view will correspond to
some theory on the semantic view; and although not any class of Tarski-models will be
the class of models of some theory, many of the most interesting such classes are.3

1Note that the symbols for satisfaction and consequence are unfortunately similar: the former is |=,
whilst the latter is �. The easiest way to distinguish them is to look at what is on the left-hand-side of
the symbol: if it is a Σ-model, then the relation is satisfaction; if it is a theory (or sentence), the relation
is consequence.

2See, for instance, Lutz (2015).
3More specifically, if a class K of Σ-models is closed under isomorphism (i.e. if a model A is in K, then

so is any model isomorphic to A) and also closed under both ‘ultraproducts’ and ‘ultraroots’ (whose
definition is too complex for a footnote), then there is some Σ-theory T such that K = Mod(T). See
(Hodges, 1993, §9.5).
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2.1. Translations between theories

What is it for two theories to be equivalent, i.e., to posit the same structure? The strictest
criterion of equivalence that one might consider is that of identity: two theories are
equivalent if they consist of the same sentences. Although this is surely a sufficient
condition for equivalence, it seems overly restrictive. For instance, this criterion would
consider the theories {∃xPx} and {∃x¬¬Px} to be inequivalent.4

A more relaxed condition is that of logical equivalence. For our purposes, this means
having the same models:

Definition 16 (Logical equivalence). Let T1 and T2 be Σ-theories. T1 and T2 are logically
equivalent if Mod(T1) = Mod(T2): that is, if for every Σ-model A, A is a model of T1 iff
A is a model of T2. ♠

There’s a natural relationship between isomorphism (as a criterion of equivalence be-
tween models) and logical equivalence (as a criterion of equivalence between theories),
expressed by the following proposition.

Proposition 1. Let T1 and T2 be Σ-theories. T1 and T2 are logically equivalent iff for
every model A1 of T1, there is an isomorphic model A2 of T2.

Proof. Left as exercise.

In the previous section, we discussed the weaker notion of H-isomorphism, as a less
language-dependent version of isomorphism. The corresponding notion for theories
would be two theories that are logically equivalent ‘up to a choice of notation’; we shall
say that two theories related in this fashion are notational variants of one another.

Definition 17. Let T1 be a Σ1-theory, and let T2 be a Σ2-theory. T1 and T2 are notational
variants of one another if there is an arity-preserving bijection k : Σ1 → Σ2 such that
k(T1) is logically equivalent to T2, where k(T1) is the result of replacing every occurrence
of any P ∈ Σ1 in T1 with k(P). ♠

However, as a criterion of equivalence, notational variance is still very strict. In the
previous chapter, we considered a further weakening from H-isomorphism, namely
codetermination. This motivates us to consider a weaker kind of relationship between
theories: that we can offer a translation between them.5

4If we had required that a theory be a set of sentences closed under entailment (so that if T � φ then φ ∈ T),
then the identity criterion would coincide with the criterion of logical equivalence.

5For more detail on translations between theories, see (Halvorson, 2019, chap. 4).
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The basic idea of translating one theory into another is that we can systematically
replace expressions of the first theory’s language by expressions of the second theory’s
language, in such a way that all theorems of the first theory are converted into theorems
of the second theory. More precisely,

Definition 18 (Translation between theories). Let T1 be a Σ1-theory, and T2 a Σ2-theory.
A translation from T1 to T2 is a map τ : Form(Σ1)→ Form(Σ2), which:

1. Preserves variables: if the Σ1-formula φ has exactly the variables ξ1, . . . , ξn free,
then τ (φ) has exactly ξ1, . . . , ξn free.

2. Commutes with substitution: for any Σ1-formula φ with the variables ξ1, . . . , ξn

free, and any variables η1, . . . , ηn,

τ (φ(η1/ξ1, . . . , ηn/ξn)) = τ (φ)(η1/ξ1, . . . , ηn/ξn) (2.1)

3. Commutes with the logical connectives: for any Σ1-formulae φ and ψ, and any
variable ξ,

τ (¬φ) = ¬τ (φ) (2.2)

τ (φ∧ ψ) = τ (φ) ∧ τ (ψ) (2.3)

τ (∀ξφ) = ∀ξτ (φ) (2.4)

etc.

4. Preserves consequence: for any Σ1-formula φ,

If T1 � φ then T2 � τ (φ) (2.5)

♠

When τ is a translation from T1 to T2, we will write τ : T1 → T2. Since a translation
is required to commute with substitution and the logical connectives, we can specify
such a translation just by specifying, for every Π(n) ∈ Σ1, how to translate Πx1 . . . xn. In
what follows, this is how we will usually specify translations.

How does the existence of a translation from one theory to another relate to the struc-
tures posited by the two theories? We can get some insight here by reflecting on how it
is reflected in the relationships between the theories’ classes of models. The key obser-
vation here is that a translation τ from one theory to another induces a ‘dual map’ τ ∗
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from the models of the latter theory to those of the former (so the dual map goes ‘in the
other direction’ from the translation).

Definition 19 (Dual map to a translation). Let τ be a translation from the Σ1-theory T1

to the Σ2-theory T2. Given any Σ2-model A, we define the Σ1-model τ ∗(A) as follows.
First, the domain of τ ∗(A) is the same as that of A, that is, |τ (A)| = |A|. Second, for any
Π(n) ∈ Σ1, we define the extension of Π in τ ∗(A) as follows: for any a1, . . . , an ∈ |A|,

〈a1, . . . , an〉 ∈ Πτ ∗(A) iff A |= τ (Π)[a1, . . . , an] (2.6)

For any model A of T2, τ ∗(A) is a model of T1 (see Proposition 3 below). So τ ∗ is a
function from Mod(T1) to Mod(T2), which we refer to as the dual map to the translation
τ . ♠

To prove the claim used in this definition—that if A is a model of T2, then τ ∗(A) is a
model of T1—we need the following useful proposition.

Proposition 2. Let τ be a translation from the Σ1-theory T1 to the Σ2-theory T2. For any
Σ2-model A, and any Σ1-sentence φ,

τ ∗(A) |= φ iff A |= τ (φ) (2.7)

Proof. By induction on the length of formulae; left as exercise.

Given this proposition, the proof that the dual map to a translation preserves model-
hood is straightforward.

Proposition 3. Let τ be a translation from the Σ1-theory T1 to the Σ2-theory T2. If A is a
T2-model, then τ ∗(A) is a T1-model.

Proof. Suppose, for reductio, that τ ∗(A) is not a T1-model. Then there must be some
sentence φ ∈ T1 such that τ ∗(A) 6|= φ. Then by Proposition 2, A 6|= τ (φ). Since A is a
T2-model, it follows that T2 6� τ (φ). But by the definition of a translation, T2 � φ; so by
contradiction, τ ∗(A) must be a T1-model.

Now, let us consider the question of how the notion of translation could be used to
articulate a criterion of equivalence. The mere existence of a translation (as defined
here) would be a very weak condition, and would have some very counter-intuitive
consequences: it would mean, for example, that any theory would be equivalent to
any strictly stronger theory (since inclusions are always translations)—indeed, that any
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theory is equivalent to some inconsistent theory! A more plausible criterion is to require
the existence of a pair of translations. This criterion is known as mutual interpretability.

Definition 20. Let T1 and T2 be theories of signatures Σ1 and Σ2 respectively. T1 and T2

are mutually interpretable if there exist translations τ : T1 → T2 and σ : T2 → T1. ♠

However, mutual interpretability is still a relatively weak notion, as the following
examples indicate.

Example 1. Let Σ1 = {P(1)}, and let Σ2 = {Q(1), R(1)}. Let

T1 = ∅ (2.8)

T2 = {∀x(Qx → Rx)} (2.9)

One would expect that T1 and T2 should not be regarded as equivalent: intuitively,
T2 says something non-trivial, whereas T1 does not. Yet T1 and T2 are mutually inter-
pretable, since

τ (Px) = Qx (2.10)

is a translation from T1 to T2, and

σ(Qx) = Px (2.11)

σ(Rx) = Px (2.12)

is a translation from T1 to T2.

In light of this, we introduce a yet stronger condition: not just that there exist a pair
of translations, but that those translations be, in a certain sense, inverse to one an-
other. The intuition here is that if we take some expression of our first theory’s lan-
guage, translate it into the second language, and then translate it back into the first lan-
guage, we should—if the pair of translations really express an equivalence between the
theories—get an expression with the same meaning as the expression with which we
began. Formally, we cash out this condition of ‘having the same meaning’ as ‘equiva-
lent modulo the ambient theory’; the resulting criterion is known as intertranslatability.6

Definition 21. Let T1 and T2 be theories of signatures Σ1 and Σ2 respectively. T1 and T2

are intertranslatable if there exist translations τ : T1 → T2 and σ : T2 → T1, such that for

6Barrett and Halvorson (2016a)
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any Σ1-formula φ(x1, . . . , xn) and any Σ2-formula ψ(y1, . . . , ym),

T1 � ∀x1 . . . ∀xn(φ↔ σ(τ (φ))) (2.13)

T2 � ∀y1 . . . ∀ym(ψ ↔ ψ(σ(ψ))) (2.14)

In such a case, we will say that τ and σ are inverse translations to one another. ♠

Where we are dealing with a pair of inverse translations of this kind, we will often
express them by writing

Πx1 . . . xn ≡ τ (Πx1 . . . xn) (2.15)

for every Π ∈ Σ1, and
Ωy1 . . . ym ≡ σ(Ωy1 . . . ym) (2.16)

for every Ω ∈ Σ2. Thus, the symbol≡will typically have expressions from two different
languages on either side of it.

In general, if we have a theory T1, then its image τ [T1] under a map τ : Form(Σ1) →
Form(Σ2) is not intertranslatable with T1, even if we suppose that τ preserves free vari-
ables, and that it commutes with substitution and the logical connectives.7 However, if
τ is ‘suitably invertible’, then this does hold. More precisely:

Proposition 4. Suppose that the translations τ : T1 → T2 and σ : T2 → T1 are inverse
to one another. Then T2 is logically equivalent to τ [T1], and T1 is logically equivalent to
σ[T2].

Proof. Suppose that there were some model B of T2 which was was not a model of τ [T1].
Then for some φ ∈ T1, f B 6|= τ (φ); but then it follows that T2 6� τ (φ), which contradicts
the assumption that τ is a translation. The other case is proven similarly.

In particular, take as given some Σ1-theory T1, and suppose that τ : Form(Σ1) →
Form(Σ2) and σ : Form(Σ2) → Σ1) preserve free variables, commute with substitu-
tion and the logical connectives. If σ(τ (φ)) is logically equivalent to φ and τ (σ(ψ)) is
logically equivalent to ψ (for every φ ∈ Form(Σ1) and ψ ∈ Form(Σ2)), then T1 is in-
tertranslatable with τ [T1]; this also holds if we have equivalence with respect to some
background theory, rather than full logical equivalence. We will employ this observa-
tion in Part II.

Finally, we observe that intertranslatability is associated with codetermination be-
tween classes of models in a natural way.

7See Barrett and Halvorson (2016a).
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Proposition 5. If τ : T1 → T2 and σ : T2 → T1 are inverse translations, then:

• for any A ∈ Mod(T1), A is codeterminate with σ∗(A), and τ ∗(σ∗(A)) = A; and

• for any B ∈ Mod(T2), B is codeterminate with τ ∗(B), and σ∗(τ ∗(B)) = B.

Proof. Left as exercise.

This suggests that intertranslatability is a fairly natural criterion for equivalence be-
tween theories. That said, we should bear in mind that all we have discussed here
are criteria of formal equivalence: roughly, of two theories having the same form, in-
dependently of their content. However, merely being of the same form is manifestly
insufficient for two theories to be equivalent in the full sense of ‘saying the same thing’.
For example, as Sklar (1982) famously observes, the two theories ‘all lions have stripes’
and ‘all tigers have stripes’ are intertranslatable but do not say the same thing. So we
should bear in mind that formal criteria like those discussed in this chapter (and, to
some extent, the whole of this book) can only be a partial guide to theoretical equiva-
lence.

22



3. Ramsey sentences

We’ve now seen some of the ways in which we can use the resources of model theory to
articulate different senses of equivalence between models and theories. In the course of
doing this, I have made occasional remarks about how these different notions of equiv-
alence might be thought to capture different notions of ‘structure’, in the sense that
they point to different ways of understanding the claim that two models, or two theo-
ries, have the same structure. However, there is an alternative way of approaching the
relationship between the notions of structure and equivalence: rather than using equiv-
alences to reveal structure, one can seek to articulate a notion of ‘structure’ directly, and
then use that to formulate a criterion of equivalence. In this section, we consider one
well-known proposal for the ‘structural content’ of a theory: that this content can be
identified with the theory’s Ramsey sentence.

3.1. Second-order logic

As we shall see, the Ramsey sentence of a first-order theory is a second-order sentence;
so we begin by reviewing the formalism of second-order logic. In second-order logic,
we can—as people say—quantify into predicate position. Intuitively, this means that we
can make quantified claims about properties (and relations): so rather than being lim-
ited to saying things like ‘all whales are mammals’, we can now say things like ‘any-
thing which is true of all mammals is true of all whales’, or ‘there are some properties
which whales and dolphins both have’.

More formally, then, second-order logic is distinguished from first-order logic by
having not only a stock Var of first-order variables x, y, z, . . . , but also a stock VAR of
second-order variables X, Y, Z, . . . . Like predicates, every second-order variable has an
associated arity n ∈ N. And as with predicates, we will indicate the arity of a second-
order variable (where helpful) by a parenthesised superscript, thus: X(n). The subset of
VAR containing all the n-ary variables will be denoted VARn.

Other than this, the symbolic vocabulary of second-order logic is the same as that of
first-order logic: we have the equality-symbol, the logical connectives, the quantifiers,
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and a signature Σ consisting of predicates (of various arities). The rules for forming
well-formed formulae are the same as for first-order logic, but with two additional
clauses:

• If X(n) ∈ VAR, and if x1, . . . , xn ∈ Var, then Xx1 . . . xn is a formula

• If ψ is a formula, and X ∈ VAR, then ∀Xψ is a formula

Respectively, these clauses tell us that the new variables can go into predicate position,
and that they can be quantified over. As with the first-order case, we will use p∨q, p→q
and p∃q as abbreviations (so ∃Xψ abbreviates ¬∀Xψ).

We now turn to the standard semantics of second-order logic.1 As with the first-
order case, we use Tarski-models: for signature Σ, a Σ-model A consists of a set A

equipped with extensions for all predicates in Σ. Given a Σ-model A, a second-order
variable-assignment G for A consists of a map g : Var→ |A|, and for every n ∈N, a map
Gn : VARn → P(|A|n). Here, P(|A|n) is the power set of |A|n, i.e. the set containing all
subsets of |A|n; thus, for any Ξ(n) ∈ VAR, Gn(Ξ) is some set of n-tuples from |A|.

Now let φ be some second-order Σ-formula, let A be a Σ-model, and let G be a second-
order variable-assignment. Truth is then defined in the same way as in the first-order
case, but with two extra clauses (corresponding to the two new clauses for formulae):

• For any Ξ(n) ∈ VAR and any ξ1, . . . , ξn ∈ Var,

A |=G X(n)x1 . . . xn iff 〈g(x1), . . . , g(xn)〉 ∈ Gn(Ξ) (3.1)

• A |=G ∀X(n)φ iff for all A ⊆ |A|n, A |=GX
A
φ

where the variable-assignment GX
A is defined by the condition that

GX
A(Y) =

G(Y) if Y 6= X

A if Y = X
(3.2)

We then say that a sentence φ is true relative to a Tarski-model A if, for every variable-
assignment G over A, A |=G φ. In this case, we write A |= φ. Consequence is defined
and denoted as in the first-order case.

1See (Shapiro, 1991, §4.2) or Manzano (1996) for more detailed treatments.
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3.2. Ramseyfication

We can now turn our attention to the Ramsey sentence itself. The intuitive idea is that
the ‘structural core’ of a theory T will make the same structural claims about the world
as T, but without committing itself to which properties or relations it is that instantiate
that structure. Thus, if a theory says something like ‘positively charged particles repel
one another’, the structural claim thereby expressed is merely ‘there is a property, such
that any two particles possessing that property will repel one another’. One might ob-
ject that even this does not go far enough, since it still speaks of ‘repulsion’; or, one
might distinguish between charge and repulsion on the basis that the notion of repul-
sion, unlike that of positive charge, is associated with a direct empirical content. In the
first instance we will take the latter attitude, since the former (more extreme) view can
be recovered as a special case.

Thus, suppose that our non-logical vocabulary Σ is divided into two classes, Ω and
Θ: intuitively speaking, we suppose that Ω is the collection of ‘observational’ predi-
cates (like ‘repulsion’), while Θ is the collection of ‘theoretical’ predicates (like ‘positive
charge’). Suppose further that the theory T we are interested in (which is formulated in
Σ) consists only of finitely many sentences; without loss of generality, we can suppose
that T consists of a single sentence.2

We first form a ‘skeleton’ theory T∗, by replacing all the theoretical predicates that oc-
cur in T by second-order variables (of the appropriate arity): that is, if only R1, . . . , Rp ∈
Θ occur in T, then

T∗ = T[X1/R1, . . . , Xp/Rp] (3.3)

where for each i, Xi is of the same arity as Ri. We then form the Ramsey sentence of T
by existentially quantifying over all of these predicates:

TR = ∃X1∃X2 . . . ∃XpT∗ (3.4)

We take the signature of the Ramsey sentence to be Σ (even though the sentence itself
only contains predicates from Ω).

We can now ask the question: how much of a theory’s structure does the Ramsey
sentence capture? To answer this, first define the observational reduct of any Σ-model A

2In principle, we could apply the Ramseyfication procedure to a theory which consisted of infinitely
many sentences. However, we would need the second-order language of TR to be an infinitary second-
order language: if T contained κ-many sentences, and if λ-many predicates from Θ occur in T, then TR

must be in a language that permits κ-size conjunction, and which admits the introduction of λ-many
second-order quantifiers. In order to not have to deal with these complications, we will suppose that
the original theory is finite.
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to be its reduct AΩ to Ω. Second, let W be a first-order model of signature Σ which is
a faithful representation of the world: i.e., which has the observational and theoretical
predicates distributed over its elements in just the way that the corresponding obser-
vational and theoretical properties are distributed over the objects of the world. If this
formulation makes you uncomfortable (which it probably should), then just think of W
as a ‘preferred model’, without worrying about in virtue of what it is preferred. We’ll
say that a Σ-theory is true if W is one of its models; that it is observationally adequate if
it has some model whose observational reduct is identical to WΩ; and that it is numer-
ically adequate if it has some model whose domain coincides with |W|. Intuitively: a
theory which is true admits a model which matches the actual number of objects, and
the actual distribution of observational and theoretical properties over those objects;
a theory which is observationally adequate admits a model which matches the actual
number of objects, and the actual distribution of observational properties over those
objects; and a theory which is numerically adequate admits a model which matches the
actual number of objects3.

This enables us to now make the following observation: for any Σ-theory T, its Ram-
sey sentence TR is true just in case T is observationally adequate.4 More formally:

Proposition 6. Let T be a theory of signature Σ, and let TR be the Ramsey sentence of
T. Then W |= TR if and only if T is observationally adequate (i.e., there is some model
A of T such that AΩ = WΩ).

Proof. First, suppose that W |= TR: that is, that

W |= ∃X1 . . . ∃XpT∗ (3.5)

This is true just in case there is some second-order variable-assignment G for W such
that

W |=G T∗ (3.6)

3Bear in mind here that W is merely supposed to be a ‘faithful representative’ of the world, not ‘the
world itself’ (whatever, exactly, these terms might mean). So it’s harmless to define observational
adequacy as the theory admitting a model identical to WΩ (not just isomorphic to it), and to define
numerical adequacy as the theory admitting a model with the same domain identical to |W| (not just
equinumerous with it)

4(Ketland, 2004, Theorem 2)
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But now consider the model A, defined as follows:

|A| = |W|

PA = PW, for every P ∈ Ω

RA
i = G(Xi), for every Ri ∈ Θ

A proof by induction shows that
A |= T (3.7)

But by construction, AΩ = WΩ. So T is observationally adequate.
Second, suppose that T is observationally adequate: i.e., that there is some model

A of T such that AΩ = WΩ. Consider any second-order variable-assignment G for A

satisfying the condition that for every Ri ∈ Θ,

G(Xi) = RA
i (3.8)

Since |A| = |W|, we can regard G as a variable-assignment for W. Then, again, a proof
by induction shows that

W |=G T∗ (3.9)

from which it follows immediately that W |= TR.

We also have the following corollary, which applies to the more radical view can-
vassed above (that the use of all predicates, not just the ‘theoretical’ ones, should be
converted to existential quantifications).

Corollary 1. Suppose that Θ = ∅ (equivalently, that Σ = Ω); that is, consider the
case where we Ramsefy away all the vocabulary. Then W |= TR if and only if T is
numerically adequate (i.e., there is some model A of T such that |A| = |W|).

Philosophically, this observation is usually taken as a problem for the proposal that
a theory’s structure is captured by its Ramsey sentence: simply put, the concern is that
Proposition 6 shows that the Ramsey sentence fails to capture anything about a theory
beyond its empirical or observational content.5 So if we do indeed take the ‘structure’
of a theory to be that which is captured by its Ramsey sentence, then we appear to

5In the literature, this objection is referred to as ‘Newman’s objection’, since a version of this objection
was discussed in Newman (1928). (Note that this is before the introduction of the Ramsey sentence in
Ramsey (1931)—even allowing for the fact that Ramsey’s essay was written in 1929. The reason for
this is that Newman’s objection was, originally, offered as a criticism of Russell (1927), and only later
applied to the Ramsey-sentence approach to theories.)
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have the corollary that a theory simply has no non-observational structure. Moreover,
there is something faintly paradoxical to this, insofar as the observational predicates
were precisely the ones that we did not Ramseyfy. So the Ramsey-sentence approach to
structure seems to hold that although the Ramsey sentence of a theory articulates that
theory structure, the only structure a theory in fact possesses is expressed by that part
of the theory’s language which is not subject to Ramseyfication!

If the Ramsey sentence is taken as expressing a theory’s structure, then it is natural
to take two theories as equivalent if they have logically equivalent Ramsey sentences.
A further way of thinking about Newman’s objection is to observe that, if we use stan-
dard second-order semantics, then this criterion of equivalence degenerates into obser-
vational equivalence. More precisely, let us say that two first-order Σ-theories, T1 and
T2, are observationally equivalent if for every model A of T1, there is some model B of T2

such that AΩ is isomorphic to BΩ, and vice versa. Then:

Proposition 7. T1 and T2 are observationally equivalent if and only if, with respect to
standard second-order semantics, their Ramsey sentences are logically equivalent.

Proof. Left as exercise.

What can be said in response? One option is to bite the bullet, and argue that—in
fact—it is good that a theory’s structure should turn out to be exhausted by its observa-
tional structure. In other words, the Ramsey sentence can be regarded as a useful vehi-
cle for expressing a (fairly strong) form of empiricism about scientific theories: it offers
one way of making precise the idea that the real content of a scientific theory is its obser-
vational or empirical ‘core’. This is, roughly speaking, the attitude that Carnap (1958)
took in advocating the Ramsey sentence as expressing the ‘synthetic part’ of a theory,
with the ‘analytic part’ expressed by the so-called Carnap sentence, TC = (TR → T).6

For non-empiricists, it is less clear what the best response is. One option is to ar-
gue that the way we have formalised the Ramsey sentence failed to capture the intu-
itive idea. In particular, note that our intuitive gloss above quantified over properties,
whereas the standard semantics for second-order logic permits the second-order vari-
ables to range over arbitrary subsets of the domain. So one might argue that the Ramsey-
sentence approach to structural content should use some other semantics for second-
order logic, where the range of the second-order quantifiers is somehow restricted.

A natural way of doing this is to use so-called Henkin semantics. In a Henkin model
H, for each n ∈ N a subset of P(|H|n) is picked out as the permitted range for the

6For commentary and discussion, see Psillos (2000) or Andreas (2017).
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second-order n-ary variables to range over.7 This suffices to avoid the Newman objec-
tion; however, it turns out that this still captures a relatively weak notion of structural
content. In particular, Dewar (2019a) shows that two theories T1 and T2 have logically
equivalent Ramsey sentences under Henkin semantics if there exist translations from
T1 to T2 and vice versa (without any requirement that these translations are inverse to
one another); and as Example 1 showed, this is a fairly weak notion of equivalence.

In sum, then, we’ve seen that the notion of ‘the structure of a theory’ is slippier than
one might expect, and admits of a variety of different formal explications. In particular,
we now have a hierarchy of criteria of equivalence, in descending order of strictness:

• Logical equivalence

• Notational variance

• Intertranslatability

• Mutual translatability

• Logically equivalent Ramsey sentences (on Henkin semantics)

• Logically equivalent Ramsey sentences (on standard semantics)

We now move away from logic, and turn to theories of physics; we will bear in mind the
lessons from these chapters, however, as guides to these more complex and interesting
cases.

7Moreover, we require that these privileged subsets are, in an appropriate sense, closed under definabil-
ity; see Manzano (1996) for details.
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Part II.

Newtonian mechanics

30



4. Newtonian mechanics

In this part of the book, we consider N-particle Newtonian mechanics: this chapter in-
troduces the theory and its symmetries, the next discusses the rationale for regarding
symmetry-related models as physically equivalent, and the one after that considers
how we might seek to revise the theory to incorporate that judgment of physical equiv-
alence.

4.1. Introduction to N-particle Newtonian mechanics

In the first instance, we will describe this theory in terms of coordinates. We therefore
expect that at least some of the structure of the theory will be unphysical, a mere ‘arte-
fact of the coordinate system’. However, we will refrain from making intuitive judg-
ments about which structural features correspond to physical features: in due course,
we will use symmetry considerations to make such judgments.

To set this up, we introduce a gadget that we will use repeatedly in what follows.
Given some mathematical structure Ω, an Ω-valued variable is one whose intended range
is Ω—thus, given a Tarski-model A, a first-order variable is a |A|-valued variable, and
a second-order variable of arity n is a P(|A|n)-valued variable. Then, given a set
{ξ1, . . . , ξm} of Ω-valued variables, the value space associated with that set consists of
all maps from {ξ1, . . . , ξm} to Ω. Note that given an ordering on the variables, such a
map can also be thought of as an m-tuple of elements of Ω: such an m-tuple, after all, is
simply a map from {1, . . . , m} to Ω. Thus, the value space is isomorphic to Ωm.1

Now, without worrying too much about what doing this might mean, we take as
given a coordinate system with x-, y- and z-axes, which persists over time; and we
take as given some clock that measures the passage of time. We introduce one R-
valued variable ptq, representing time, and three R-valued variables px1q, px2q and
px3q, representing (respectively) the x-, y- and z-components of position. From these,

1Of course, one of the lessons that should have been taken from the previous chapters is that this kind of
loose use of terms like ‘isomorphic’ is to be deplored. Consider this evidence that one should do as I
say, not as I do.
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we form the value spaces T (isomorphic to R) and X (isomorphic to R3); they repre-
sent time and (position) space. We then introduce X-valued variables px1q, . . . , pxNq,
with xn representing the position of the nth particle. The value-space for these variables
will be denoted Q, and represents ‘configuration space’. Q therefore consists of maps
from {x1, . . . , xN} to X. Each such map is equivalent (via uncurrying) to a map from
{x1, . . . , xN} × {x1, x2, x3} → R: we abbreviate the pair 〈xn, xi〉 as xi

n, so that Q can also
be thought of as the value-space for 3N real-valued variables xi

n (with 1 ≤ i ≤ 3 and
1 ≤ n ≤ N).

The dynamics of the theory are given by the following set of differential equations
(where 1 ≤ i ≤ 3 and 1 ≤ n ≤ N):

mn
d2xi

n
dt

= Fi
n (4.1)

Each equation in this set contains two new symbols, pmnq and pFi
nq; these are also taken

to be real-valued (in the case of mn, to be positive real-valued). mn represents the mass
of the nth particle, and Fi

n the ith component of the force on the nth particle.
A kinematically possible model for this theory will specify (constant) values for the mn,

and the value of all xi
n and Fi

n at each t ∈ T; so the data specified consists of N real
numbers, and 6N functions from T to R. Such a kinematically possible model is a
dynamically possible model if it is a solution of (4.1): that is, if for all t ∈ T, and all 1 ≤ i ≤ 3
and 1 ≤ n ≤ N,

mn
d2xi

n
dt2 (t) = Fi

n(t) (4.2)

This theory is something of a framework; we can make it more specific by adding
force-laws for the forces Fi

n. For example, if we suppose that each of our N particles has
an electric charge qn, and that they are in some electrical field given by Ei : X → R3,
then we have

Fi
n = qnEi(xn) (4.3)

On the other hand, if we are instead considering a theory where the N particles are
mutually interacting through gravitation, then

Fi
n = ∑

p 6=n

Gmpmn

|xn − xp|2
xi

n − xi
p

|xn − xp|
(4.4)

where
|xn − xp| :=

√
∑

j
(xj

n − xj
p)2 (4.5)
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Finally, in the trivial case of free particles, the force-functions are especially simple:

Fi
n = 0 (4.6)

4.2. Changes of variables

The theory above is (by design) stated for a single coordinate system. It is taken as
read that the theory describes phenomena which are independent of a coordinate sys-
tem. However, simply because the phenomena are independent of a coordinate system,
it does not follow that the theory is: in particular, just because the theory holds in our
coordinate system it does not follow that it will hold in some other coordinate system.
What follows is merely that some other theory, systematically related to this one, will
be true in that coordinate system. In other words, in order to make use of another co-
ordinate system, we must specify how to translate the theory into a theory appropriate
to that coordinate system.

It will be best to illustrate this by an example. Let N = 1, and suppress the third
dimension: then, writing x1

1 = x and x2
1 = y, the theory reduces to the form

mẍ = Fx(x, y) (4.7a)

mÿ = Fy(x, y) (4.7b)

where dots indicate differentiation with respect to t. Writing the value-space of the set
{pxq, pyq} as X × Y (which is isomorphic to R2), we may consider solutions to this
theory as functions from T to X×Y.

We now introduce new variables (the polar coordinates) prq and pθq, and stipulate that
pxq and pyq are translated into these new variables according to

x ≡ r cos θ (4.8a)

y ≡ r sin θ (4.8b)

where have used the notation introduced in Chapter 2 (anticipating that this translation
will be invertible).

The value-space for the set of variables {prq, pθq} will be denoted R×Θ. We saw in
Chapter 2 that any translation induces a dual map on models; here, this corresponds to
the fact that a translation from the variables pxq, pyq to the variables prq, pθq induces a
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map from R×Θ to X×Y, namely:

(r, θ) 7→ (r cos θ, r sin θ) (4.9)

In order that this map be a bijection, we stipulate that r ≥ 0, that (r, θ) = (r, θ + 2π),
and that (0, θ) = (0, 0).2 This means we can write down expressions for the inverse
translations:

r ≡
√

x2 + y2 (4.10a)

θ ≡ tan−1
(y

x

)
(4.10b)

together with the requirement that if x = 0, then θ = π/2.
We therefore have an invertible pair of translations, and so we can seek to translate

the theory (4.7) into the new coordinate system. First, we observe that applying the
derivative operator twice to each side of the translations (4.8) yields

ẍ ≡ (r̈− rθ̇2) cos θ− (2ṙθ̇+ rθ̈) sin θ (4.11)

ÿ ≡ (r̈− rθ̇2) sin θ+ (2ṙθ̇+ rθ̈) cos θ (4.12)

If we substitute in these expressions, then we get a theory whose differential equations
are

m(r̈− rθ̇2) cos θ− (2ṙθ̇+ rθ̈) sin θ = Fx (4.13a)

m(r̈− rθ̇2) sin θ+ (2ṙθ̇+ rθ̈) cos θ = Fy (4.13b)

However, this theory is—in a certain sense—only a partial translation, since we are still
expressing the forces in terms of their components in the original coordinate system.
Provided that is understood, of course, the theory is still appropriate as a translation,
and captures the same content as the original; indeed, there might even be situations
where using one coordinate system to describe positions and another to describe forces
might be appropriate (although it is not so easy to think of an example).

Nevertheless, one might argue that it is unsatisfactory, given that it makes use of
two coordinate systems. For this reason, the label of ‘Newtonian mechanics in polar

2Geometrically, this means that R×Θ has the structure of a half-cylinder that has been ‘pinched off’ at
one end.
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coordinates’ is typically reserved for the theory

m(r̈− rθ̇2) = Fr (4.14a)

m(2ṙθ̇+ rθ̈) = Fθ (4.14b)

which may be obtained by extending the translation τ to the force expressions, accord-
ing to

Fx ≡ Fr cos θ− Fθ sin θ (4.15)

Fy ≡ Fr sin θ+ Fθ cos θ (4.16)

That is, if we substitute these expressions into (4.7), then after some algebraic manipu-
lation we obtain the translated theory (4.14). As we would expect, if we do the reverse
process, then we find that the translations (4.10) will convert the theory (4.14) into the
theory (4.7)—provided, that is, that we translate the force-functions according to

Fr ≡ x√
x2 + y2

Fx +
y√

x2 + y2
Fy (4.17a)

Fθ ≡ x√
x2 + y2

Fx − y√
x2 + y2

Fy (4.17b)

Why are these the ‘correct’ ways of extending the coordinate translations to trans-
lations of force-expressions? The standard answer appeals to geometric arguments, in
particular the fact that force is a vector quantity; thus, the components of forces in a new
coordinate system are determined by computing how the ‘coordinate vectors’—unit
vectors directed along the coordinate axes—change under the move to a new coordi-
nate system. However, this simply pushes the argument back, to the question of how
it is we determine that forces are vector quantities. In Chapter 6 we will argue that at
least part of the answer to that question is based on considerations due to symmetry,
and yet (as we will see in the remainder of this chapter) those symmetry transforma-
tions depend upon fixing how it is that forces transform under coordinate changes. So
circularity threatens; how to escape that threat (and whether it can be escaped) is left
for the reader to ponder.

One might argue that this circularity is just a predictable consequence of being so
foolish as to use coordinates in foundational enquiry.3 Rather, we should present New-
ton’s laws in Newton’s terms, according to which positions are points in a three-dimensional

3See (Maudlin, 2012, chap. 2) for an especially trenchant expression of the point of view I have in mind
here.
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Euclidean space, and forces are quantities associated with both a magnitude and a
direction in that space. For calculational convenience we can then introduce coordi-
nates, and use them to arithmetise positions and forces; and, indeed, we’ll find that
those arithmetical expressions transform between coordinate systems in the ways given
above. But (on this view) there’s no need for mystery-mongering about ‘what makes
force a vector quantity’—that’s something we put in at the start of describing the theory,
not the output of sufficient philosophical chin-stroking!

Now, there is definitely something right about this. Once we know the geometric
character of the entities involved in a given theory, there are indeed very good rea-
sons to present the theory in terms of those geometric structures (rather than in terms
of coordinates). But the topic we are interested in is exactly the question of how one
comes to determine which geometric structures are the right ones. For Newtonian me-
chanics, it’s tempting to think that it’s just obvious what geometric structures the theory
involves—isn’t the position of a point particle just manifestly described by a point in
a three-dimensional Euclidean space, and the notion of a force clearly a quantity that
possesses both magnitude and direction? Unfortunately, even if we grant these exam-
ples,4 that’s no guarantee that finding the right kind of geometric object will always be
so easy—whether in other theories, or even (as we shall see) in Newtonian mechanics.

4.3. Symmetries

We now turn our attention to symmetries, which we define as translations between a the-
ory and itself. I remarked in the previous section that although the (presumed) coordinate-
independence of the phenomena reassures us that we should be able to find some theory
which can model those phenomena in another coordinate system and is a translation
of our original theory, there was no a priori reason to think that this other theory should
be similar to theory we started with.5 However, it turns out that certain special trans-
lations do preserve the theory, in the sense that applying the translation yields a theory
of the same form as—in the terminology of Chapter 2, which is a ‘notational variant
of’—the one with which we began. I remark that from now on we will refer to ‘trans-
formations’ of variables rather than ‘translations’, in order to avoid a terminological
clash with ‘spatial translations’.

4Which is already somewhat dubious, given how much work is required to make (say) the notion of a
point particle intellectually respectable.

5Again, I stress that the criterion for ‘sameness of theory’ that is being used here is that of logical
equivalence—that is, identity of syntactic form (modulo logical manipulation), not of propositional
content.
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The symmetries in question are the so-called Galilean transformations:6

Definition 22. A Galilean transformation of the variables t, xi
n to the variables t̃, x̃i

n is any
transformation of the form

xi
n ≡ Ri

j x̃
j
n + ui t̃ + ai (4.18a)

t ≡ t̃ + b (4.18b)

where b ∈ R, ai ∈ R3, ui ∈ R3, and Ri
j is an orthogonal matrix.7 ♠

Geometrically, we interpret the group of Galilean transformations as comprising any
combination of spatial translations (the ai term), spatial rotations and reflections (the
action of Ri

j), temporal translations (the b term), and Galilean boosts (the ui t̃ term).8

Now, merely applying these transformations will not deliver a theory of the same
form as (4.1). In order for that to happen, the force term must be transformed according
to

Fi
n 7→ Ri

j F̃
j
n (4.19)

Again, the standard justification for why the force-terms should be transformed like
this is that forces are vectors; for our purposes, though, we merely note that if this
transformation is applied (together with the transformation (4.18)), then the theory ob-
tained is

Ri
jmn

d2 x̃i
n

dt
= Ri

j F̃i
n (4.20)

which is—once we’ve applied the inverse matrix to Ri
j on both sides—a notational

variant of (4.1).
Note that in order for this procedure to work, we don’t actually need Ri

j to be an
orthogonal matrix: it will suffice that it be invertible. In this sense, the symmetry group
of Newton’s Second Law (alone) is wider than the Galilean group.9 However, if we
regard the force-term not just as a placeholder, but as some functional expression for
the forces in terms of other physical quantities, then we can ask: are the new force-
components F̃i

n, when expressed as functions of the new coordinates x̃i
n, of the same

functional form as the old force-components Fi
n when those were expressed as functions

of the old coordinates xi
n?10 In other words, suppose we supplement Newton’s Second

6Here and throughout, we use the Einstein summation convention (see Appendix A).
7That is, a matrix whose transpose is its inverse: see Appendix A.
8I exclude time-reversal, although this is also a symmetry of these equations, simply because it’s a rather

tricky one to deal with.
9See (Wheeler, 2007, Appendix 1).

10cf. (Brown, 2005, §3.2).
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Law (4.1) by a force-law of the schematic form

Fi
n = Φi

n(t, xp, vp) (4.21)

where Φi
n(t, xp, vp) is a functional expression featuring (in general) the time, particle

positions, and particle velocities—such as found in (4.3), (4.4), or (4.6). Then we can ask
whether a given transformation of the coordinates and force-components is a symmetry
of this force-law; that is, whether substituting the expressions in (4.18) and (4.19) will
enable us to derive

F̃i
n = Φi

n(t̃, x̃p, ṽp) (4.22)

where ṽi
p = vi

p + ui.
And the answer to this question is that if the forces are independent of the time and

the particle velocities, and if they depend only on inter-particle displacements, and if
they only depend on those either ‘linear component-wise’ or via distances—then the
symmetry group is the Galilean group.11 More precisely, the Galilean transformations
will be symmetries if we suppose that Φi

n takes the form

Φi
n(t, xp, x′p) = Mkm

n(xi
k − xi

m) (4.23)

where Mkm
n is an array of N3 coefficients that depend only on the inter-particle dis-

tances (i.e. on expressions of the form |xn − xp|, defined as in Equation (4.5)). Thus,
the force-law (4.4) satisfies this condition, as does the (trivial) force-law (4.6); but the
force-law (4.3) does not.

As we discussed in §4.2, the transformation (4.18) will induce a map T̃× X̃ to T× X;
this will, in turn, induce a (bijective) mapping from solutions over the latter space to
solutions over the former space. However, if the transformation is a symmetry, then
the same differential equations will hold over both spaces, and so we can interpret the
transformation actively rather than passively: that is, we can identify X with X̃ and T
with T̃, and regard this map as a bijection from the space of solutions over T × X to
itself. This mapping will relate a given solution to (4.1) to a solution which is (relative to
it) translated, rotated, and boosted. The question we now consider is what the relation
is between these solutions: in the next chapter, we discuss some reasons for thinking
that these solutions are physically equivalent, and in Chapter 6 we consider how to refor-
mulate the theory in light of such a judgment.

11The fact that the symmetry group depends on the nature of the force-laws—in particular, on whether
they are velocity-independent or not—is discussed in (Brown, 2005, §3.2) and Barbour (1989).
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5. Symmetry and equivalence

In this chapter, we consider the idea that when two models of Newtonian mechanics are
related by a Galilean symmetry, they are (or should be interpreted as) physically equiv-
alent. This idea has a long history, going back (at least) to the famous correspondence
of Leibniz and Clarke:

To say that God can cause the whole universe to move forward in a right
line, or in any other line, without making otherwise any alteration in it;
is another chimerical supposition. For, two states indiscernible from each
other, are the same state; and consequently, ’tis a change without any change.1

This quotation also points towards one of the key ideas underpinning this interpreta-
tional move, at least in the current literature: the idea that Galilean symmetries hold
between models that are indiscernible from one another, or (as we would say now) that
they are empirically equivalent.2

In this chapter, we get a handle on why we might think that such models are empiri-
cally equivalent. The argument for this goes, roughly, as follows:

• To say that two models are empirically discernible is to say that some quantity
could be measured to have different values in the two models.

• To measure a physical quantity is to set up a dynamical process which reliably
and systematically correlates the value of that quantity with some independent
quantity belonging to the measuring device.

• Symmetries commute with the dynamics: applying a symmetry transformation
and letting a system evolve delivers the same result as letting the system evolve
then applying the symmetry transformation.

• So if a measuring device ends up in a certain state when the symmetry is not ap-
plied, and if the quantities characterising that state are independent of the sym-
metry, then it will end up in the same state when the symmetry is applied.

1(Alexander, 1956, p. 38)
2Exactly what role empirical equivalence plays in Leibniz’s own argument(s) for this conclusion is a

rather more vexed question, and not one that we will go into any deeper here.
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• And so, there is no way of reliably correlating a symmetry-variant quantity with
the end state of the measuring device.

In the next section, we make precise the sense in which ‘symmetries commute with the
dynamics’, and how this means that the symmetry-invariant dynamics is (as we will
say) autonomous from from the symmetry-variant dynamics; after that, we discuss
how to draw a conclusion about measurability from this observation about dynamics.

5.1. Autonomy

To do the analysis, which will closely follow Wallace (ndc))’s treatment, we will take
advantage of the determinism of the Newtonian theory: the fact that, under fairly mild
assumptions, fixing the positions and velocities of all the particles at one time yields
a unique evolution of the system thereafter.3 For these purposes, it will be helpful to
introduce state space. First, we introduce 3N real-valued variables pvi

nq to represent the
particle velocities, and then define the state space Q̂ to be the value space associated
with the set {pxi

nq, pvi
nq}, for 1 ≤ i ≤ 3 and 1 ≤ n ≤ N; thus, Q̂ is isomorphic to R6N .

Then, let x : T → Q be a trajectory through configuration space. The lift of x is the
trajectory x̂ : T → Q̂ defined by

x̂i
n(t) =

(
xi

n(t),
dxi

n
dt

(t)
)

(5.1)

This is what lets us interpret the variables pvi
nq as labelling velocities.4 The value of this

is that—as promised—although there can be more than one physically possible trajec-
tory that passes through a given point of Q, there can be only one physically possible
trajectory that passes through a given point of Q̂. For any given point x̂ ∈ Q̂, and any
time period ∆t, let ∆t(x̂) be the time-evolute of x̂: that is, if the solution x is such that
x̂(0) = x̂, then x̂(t) = ∆t(x̂).

We now turn to the autonomy argument itself, which is based on Wallace (ndc). In
the interests of simplicity, we will only give the argument for the Euclidean group of

3Mild, but not inviolable. For example, we must assume that the forces are describable by Lipschitz-
continuous functions: see Norton (2008) for a model with non-Lipschitz force-functions, and Malament
(2008), Wilson (2009), and Fletcher (2012) for discussion. For more ways in which classical determinism
can break down, see Earman (1986).

4Technically speaking, Q̂ is the tangent space to Q. The kind of construction here can be extended to higher
derivatives and partial derivatives: this yields the concept of a jet space, which can be used to give a
nice treatment of partial differential equations (since a partial differential equation is just an algebraic
equation for an appropriate jet space). See (Olver, 1986, §2.3), Belot (2013).
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symmetries E; extending this to the full Galilean group poses interesting issues, that
we do not have the space to treat here.5 First, we extend the action of the Euclidean
group E on Q to an action of E on Q̂, by stipulating that the action of some element
(Ri

j, ai) ∈ E on (xi
n, vi

n) is

xi
n 7→ Ri

jx
j
n + ai (5.2a)

vi
n 7→ Ri

jv
j
n (5.2b)

Strictly, we already anticipated that this is the appropriate action (at the end of the
previous chapter), but now we can see why this is so. The reason is that it respects the
lifting of trajectories from Q to Q̂: that is, for any Euclidean transformation g ∈ E and
any trajectory x : T → Q,

ĝx = gx̂ (5.3)

Since the action of E on Q̂ is independent of time, we have the following fact (a precise
statement of our earlier claim that ‘symmetries commute with the dynamics’):

Proposition 8. For any point x̂0 ∈ Q̂ and any Euclidean transformation g ∈ E, ∆t(g(x̂)) =

g(∆t(x̂0)). In other words, the diagram below commutes:

Q̂ Q̂

Q̂ Q̂

g

g

∆t ∆t

Proof. Take any x̂0 ∈ Q̂, and consider the solution x̂ : T → Q̂ such that x̂(0) = x̂0,
and (hence) x̂(∆t) = ∆t(x̂0). Since symmetries map solutions to solutions, gx̂ is also a
solution (for any g ∈ E). But (gx̂)(0) = g(x̂(0)) = gx̂0, and (gx̂)(∆t) = g(x̂(∆t)) =

g(∆t(x̂0)); so ∆t(gx̂0) = g(∆t(x̂0)).

The action (5.2) partitions Q̂ into E-orbits;6 this means that if we choose some refer-
ence point x̂0 within each orbit, then points of Q̂ can be (redundantly) labelled by pairs
of the form ([x̂0], g) where [x̂0] is an E-orbit and g ∈ E. But since the symmetries in E
commute with the dynamics, if two points x̂, ŷ ∈ Q̂ are in the same E-orbit, then their
time-evolutions ∆t(x̂) and ∆t(ŷ) must be in the same E-orbit as well. Thus, if we know
what E-orbit the system is in at one time, we can predict what E-orbit it will be in at any

5For discussion, see (Wallace, ndc, §8).
6See Appendix B.
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later time: and it is in this sense that there is a dynamics for the E-invariant data which
is autonomous from the E-variant data. It follows that if we alter the E-variant data, by
moving the state of the system around within an orbit, this will have no effect on what
orbit the system occupies at a later time.

What about the other direction? Will changing the invariant data alter the evolution
of the variant data? More precisely, suppose that we take a given point (O, g) in Q̂
(where O is an E-orbit), and consider the point (O′, g): if ∆t(O, g) = (P, h), is it the case
that ∆t(O′, g) = (P′, h)? In general, the answer to this question is ‘no’.7 Let us take the
case N = 2, and restrict our attention to the translation group T: a symmetry orbit of T
in Q̂ is then specified by the displacement xi

2 − xi
1, and the (absolute) particle velocities

vi
1 and vi

2. Now suppose that we take the reference point within each orbit to the be
the point such that the first particle is at the origin, i.e. xi

1 = 0. Then moving from a
point (O, g) to a point (O′, g) amounts to altering the location (or velocity) of particle
2 whilst leaving the location of particle 1 the same; and in general, this will affect the
future evolution of particle 1’s location. Suppose, for example, that the two particles
are in a stable orbit; then moving particle 2 away from particle 1 will mean that particle
1’s location will evolve very differently (compared to how it would have evolved had
they remained in a stable orbit).

5.2. What makes a measurement?

Thus, we have found that structural features of a Euclidean symmetry mean that if
we alter the Euclidean-variant data (i.e. absolute location and orientation) but not the
Euclidean-invariant data (i.e. relative positions and orientations) then the future evolu-
tion of the invariant data is unaffected; and we have seen that this does not hold if we
swap the terms ‘variant’ and ‘invariant’. As already mentioned, these results extend to
the full Galilean group. Consequently, insofar as we seek a dynamics for the Galilean-
invariant data, we need not consider the variant data. In particular, this demonstrates
that if we wanted to use the invariant degrees of freedom as a way of measuring the
variant degrees of freedom, we would not be able to do so: there is no way to get a sys-
tem of particles to measure their absolute velocity, in the sense of having some setup
which will reliably correlate the absolute velocity of those particles with their relative
positions and velocities.

7Indeed, in a sense this question isn’t even well-posed: what it means to change the symmetry-invariant
data whilst not changing the symmetry-variant data is dependent on the choice of reference point
within each orbit. This argument shows that even if we ignore this problem, we obtain a negative
answer.
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However, this naturally invites the question: is there something wrong with using the
variant degrees of freedom as a means of measuring the variant degrees of freedom?
For example, the facts about an object’s absolute position over time certainly encode
facts about its absolute velocity. So suppose that someone proposed using absolute
position as a means of measuring absolute velocity. Now, it certainly seems that there’s
something defective about this proposal; can we say anything enlightening about what
that something is?

Broadly speaking, one can discern three proposed answers to this question in the
literature. One answer points to the fact that absolute position and velocity are un-
observable, in the sense that we as humans cannot perceive them directly; the above
argument is then understood as showing that they cannot be indirectly detected, ei-
ther. This answer then (typically) goes on to conjecture that the definition of symmetry
should include the requirement that symmetry-related models are (in some appropri-
ate sense) observationally equivalent. For examples of this answer, see Dasgupta (2016)
and Ismael and van Fraassen (2003).

A second answer points toward considerations from philosophy of language. The
idea here is that even if we were able to detect symmetry-variant quantities by record-
ing the result in other symmetry-variant quantities, the knowledge that would thereby
be gained would exhibit a peculiar form of untransmissibility or unencodability. We can-
not (for example) encode the ‘result’ of this detection by such familiar means as writing
it down, or weaving it into a tapestry, or sending it via email; it would therefore violate
a principle that any reliably manipulable physical process can be used as a channel for
communicating knowledge. Roberts (2008) outlines a concern of this kind.

Finally, Wallace (ndc) has argued that the problem with a ‘measurement’ of this kind
is that the quantity being measured and the quantity being used to encode the mea-
surement result are insufficiently independent of one another. To motivate this answer,
consider the proposal that we use an object’s absolute velocity as a measure of its own
absolute velocity: certainly, these two quantities are guaranteed to covary with one an-
other, but it seems wrong to think of this as a measurement. Paraphrasing somewhat,
Wallace then argues that when we take the kind of abstract dynamical perspective laid
out above, we end up recognising the symmetry-variant data as constituting a single
quantity. It will then follow that the kind of procedure suggested at the start of this
section is defective for the same reason.

There is not the space here to defend any of these answers in detail, or to discuss
further nuances.8 However, we will take it that one of these answers can be made to

8One very important such nuance is that the discussion here only concerns the case where we seek to
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work; or at least, that there is clearly something defective about the proposal to record
measurements of symmetry-variant data in other symmetry-variant data. Helping our-
selves to that assumption, we conclude (on the basis of the autonomy of the symmetry-
invariant data) that no non-defective measurement of symmetry-variant quantities is
possible after all. Together with plausible Occamist norms about not having unde-
tectable quantities in one’s physics, this motivates the interpretation of symmetry-related
models as physically equivalent; or in other words, the interpretation of symmetry-
variant quantities as ‘surplus structure’. In the next chapter, we examine some conse-
quences of adopting such an interpretation.

record the result of measuring some quantity of the system in other quantities of that same system;
thus, we have neglected any discussion of how things stand when we think about relationships be-
tween subsystems. Yet such cases are crucial to a proper understanding of the empirical significance of
symmetries: see Kosso (2000), Brading and Brown (2004), Healey (2009), Greaves and Wallace (2014),
Wallace (nda), and references therein.
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6. Galilean spacetime

So suppose that we are persuaded that symmetry-related states of affairs should be
regarded as physically equivalent. Our next step—plausibly—should be to find some
way of presenting our theory so that the symmetry-related states of affairs are more
manifestly equivalent; that is, to find a version of the theory such that symmetry-related
models are mathematically equivalent.1 In this chapter, we consider such a reformula-
tion: that which sets the theory on Galilean spacetime. This amounts, in effect, to looking
at the structure of T × X (which is, recall, isomorphic to R4) that is invariant under the
action of the Galilean group.

6.1. Euclidean space and time

In this section, we consider the action of the Euclidean group E on X, and ask what
substructure of X is invariant under this group action. It is best to begin with the action
of the (three-dimensional) orthogonal group O(3), i.e. the group of all rotations and
reflections. So let Ri

j be an orthogonal matrix, and consider the mapping from X to
itself given by

xi 7→ Ri
jxj (6.1)

First, we observe that the vector-space structure of X is preserved, since the mapping
(6.1) is a linear map: that is, for any xi, yi ∈ X and a ∈ R,

Ri
j(xj + yj) = Ri

jxj + Ri
jyj (6.2)

Ri
j(axj) = aRi

jxj (6.3)

1Indeed, on some analyses of symmetry, it is an error to—as we have done here—interpret symmetries
as relating physically equivalent states of affairs before having such a redundancy-eliminating alter-
native to hand. In the terminology of Møller-Nielsen (2017), the viewpoint taken here (where one
interprets symmetries as physical equivalences before reformulating the theory) is referred to as the
interpretationalist approach; the alternative (where a symmetry may only be interpreted as a physical
equivalence once such a reformulation has been found) is referred to as the motivationalist approach,
since symmetries merely provide motivation for seeking an appropriate reformulation, not warrant for
an interpretation. For defences of the motivationalist approach, see Møller-Nielsen (2017); Read and
Møller-Nielsen (2018); for the interpretationalist approach, see Saunders (2003).
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Second, we observe that the Euclidean inner product on X is preserved, since Ri
j is an

orthogonal matrix: that is, for any xi, yi ∈ X,

δijRi
kxkRj

lyl = δijxiyj (6.4)

These results should be fairly intuitive: the first means that the linear structure of X
is preserved under rotations and reflections, and the second means that the distance
from any point to the origin is preserved.2 Thus, the structure of X invariant under
rotations and reflections includes, at least, the structure of a Euclidean vector space.
Furthermore, it turns out that the structure of a Euclidean vector space X exhausts the
invariant structure of X, in the following sense: the only automorphisms of a Euclidean
vector space are the rotations and reflections. Thus, replacing X with its O(3)-invariant
substructure means replacing it by a Euclidean vector space X.

However, we don’t want the theory to be invariant only under rotations and reflec-
tions: it should also be invariant under translations. Therefore, we need to pick out the
substructure of X which is invariant under translations.3 As discussed in Appendix
A, the translation-invariant substructure of a vector space is an affine space; and the
translation-invariant substructure of an inner-product space is a metric affine space. So
the E-invariant substructure of X is a three-dimensional Euclidean affine space, X .

Finally, consider the temporal translations. As with the spatial translations, these
mean that we should replace T with a (one-dimensional) affine space T . However,
since the vector space associated to this affine space is T (which is isomorphic to R), the
affine space has not only a metric but also an orientation: in other words, a distinction
between the past and future directions. This is a consequence of our cowardly deci-
sion to exclude time-reversal from the Galilean group by mere fiat; had we not done
so, then the temporal vector space would be a non-oriented one-dimensional inner-
product space, and the temporal affine space would be a non-oriented one-dimensional
Euclidean affine space. We’ll see in a moment how this makes our lives easier.

Thus, the spatial and temporal symmetries of our theory motivate us to move from
T× X to T ×X . This latter structure is a product affine space, whose associated vector
space is T ⊕ X.4 It is (a very anachronistic rendering of) the kind of structure that
Newton hypothesised for space and time; for this reason, the structure T ×X is known

2This gloss—that preservation of the inner product is equivalent to preservation of the norm—exploits
the fact that Euclidean inner products and Euclidean norms are interdefinable.

3The vector space X, if regarded as a candidate for physical space, is referred to in the literature as
Aristotelian space.

4See Appendix A.
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in the literature on spacetime theories as Newtonian spacetime.5

This lets us state our theory in ‘Euclidean-invariant’ terms. Rather than having our
particles’ locations take values in X ∼= R3, let us instead have them take values in our
Euclidean space X ; as before, we will use the (non-indexed) variable xn for the location
of the nth particle. Furthermore, in light of the fact that forces transform like locations
under rotations and reflections, but remain invariant under translations, let us have the
forces take values in X: this is the sense in which the symmetry structure of the theory
indicates to us that force is a vectorial quantity. We replace the triple of variables Fi

n

with the X-valued variable ~Fn.
We can now write down the following new version of (4.1):

mn
d2xn

dt
= ~Fn (6.5)

This equation is well-formed: given an X -valued curve parameterised by T , its future-
directed derivative is an X-valued curve parameterised by T ; and the future-directed
derivative of that curve is another X-valued curve parameterised by T . Note that if T
was not an oriented space, then we could not so straightforwardly encode derivatives
with respect to T as vectors.6 Thus, it makes sense to demand that (6.5) holds at all
times in T .

6.2. Galilean spacetime

However, Newtonian spacetime is not invariant under Galilean boosts; so our work
is not yet done. First, though, we need to specify how it is that a Galilean boost acts
on Newtonian spacetime (compared to coordinate space and time). First, its action on
Newtonian vector space is as follows: given any (t⊕~x) ∈ T ⊕X, a boost along ~u ∈ X

acts according to

t 7→ t (6.6)

~x 7→ ~x + ~ut (6.7)

5Stein (1967)
6See Malament (2004) for discussion of what we could do instead.
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To specify a boost’s action on T ×X , we must choose some specific time τ0 ∈ T ; relative
to this choice, a boost along ~u acts on (τ , x) ∈ T ×X as

τ 7→ τ (6.8)

x 7→ x + ~u(τ − τ0) (6.9)

We start by considering what structure of T ⊕X is invariant under boosts.7 Let us
refer to an element of T ⊕X as a four-vector. Both T and X are subspaces of T ⊕X:
the former corresponds to all four-vectors of the form (t, 0), and the latter to all four-
vectors of the form (0,~x). A boost preserves the latter subspace, but not the former,
since a boost acts on elements of these subspaces as follows:

(t⊕ 0) = (t⊕ ~ut) (6.10)

(0⊕~x) = (0⊕~x) (6.11)

However, although it does not preserve the subspace T, it does preserve the quotient
space T ⊕X�X; and this quotient space is isomorphic (as a vector space) to T, via the
isomorphism t 7→ {(t,~x) : ~x ∈ X}. Thus, T ⊕X�X is a one-dimensional oriented
Euclidean space.

This motivates the conjecture that the substructure of T⊕X invariant under boosts
is the structure of (what we shall call) a Galilean vector space:

Definition 23. A Galilean vector space is a four-dimensional vector space G with a priv-
ileged three-dimensional subspace X, equipped with a Euclidean inner product on X,
and both a Euclidean inner product and an orientation on G�X. The quotient space
G�X may therefore be identified with the space T. ♠

We will say that a Galilean four-vector ~ξ ∈ G is purely spatial if ~ξ ∈ X; note well
that there is no analogous notion of a Galilean vector’s being ‘purely temporal’. The
structure of G is that of a four-dimensional vector space that has been foliated into
families related by purely spatial vectors; these families are the elements of the quotient
space T. Unlike Newtonian four-vectors, Galilean four-vectors cannot be (uniquely)
decomposed into spatial and temporal components. However, given a Galilean four-
vector ~ξ, we can take its temporal projection ~ξT, by applying quotient map from G to T;
that is, ~ξT is simply the family to which ~ξT belongs, and may be identified with a real
number (in light of the inner product and orientation on the quotient space).

With this, we can define Galilean spacetime as follows:
7The following is based on Saunders (2013).
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Definition 24. A Galilean spacetime is an affine space G whose associated vector space
G is a Galilean vector space. ♠

And, indeed, we find that the automorphisms of Galilean spacetime—so defined—
are precisely the Galilean transformations. The structure of Galilean spacetime, as with
affine spaces generally, is that of Galilean vector space ‘without the origin’. More specif-
ically, it is a four-dimensional affine space with a foliation into three-dimensional sub-
spaces, where each subspace is isomorphic to X (equivalently, where the elements of
each three-dimensional subspace are related by purely spatial vectors); and where the
quotient space G�X is isomorphic to T . Given a point ξ ∈ G, we take its temporal projec-
tion to be the point ξT ∈ T to which it is taken by the quotient map (in other words, to
be the subspace to which it belongs).

The key difference from Newtonian spacetime, then, is that there is no ‘persistence
of space over time’: since there is no notion of a vector being ‘purely temporal’, we
cannot say of two points in G that they differ by a purely temporal vector, and hence
correspond to the same point of space at two different times. (By contrast, since we do
have a notion of purely spatial vectors, we can say of two points of G that they differ by
such a vector and hence correspond to two different points of space at the same time;
this is precisely the relation that foliates G.)

Finally, then, we wish to state our theory of Newtonian mechanics in terms of these
structures. To do so, we will take a kinematically possible model to consist of N smooth
curves γn : T → G, all of which are such that for any t ∈ T , (γn(t))T = t. It follows that
the derivative dγn/dt is (at any time) a Galilean four-vector whose temporal projection
is 1; and hence, that the second derivative d2γn/dt2 is (again, at any time) a purely
spatial Galilean four-vector. So, letting forces take values (as before) in X, our final
formulation of Newtonian mechanics consists of the equation

mn
d2γn

dt2 = ~Fn (6.12)

The upshot of all this is that if two solutions γ and γ ′ are related by a Galilean trans-
formation, then they are isomorphic to one another. More precisely, there are isomor-
phisms g : G → G and h : T → T such that for all t ∈ T , g(γ(t)) = γ ′(h(t)); that is,
such that the following diagram commutes:

T G

T G

γ

h g

γ ′
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As a result, γ and γ ′ are structurally indistinguishable. So, as desired, we have refor-
mulated our theory in such a way that physical equivalence corresponds to structural
equivalence.

There is a great deal of debate in the literature about whether this kind of structural
equivalence is enough, or whether something stricter is required—such as a formula-
tion of the theory in which symmetry-related models are identical (not just isomorphic).
For the most part, this debate takes it as read that structurally equivalent models agree
on the distribution of qualitative properties, and therefore concerns the acceptability of
arguing on purely philosophical grounds (i.e. without further mathematical work) that
there are no non-qualitative differences between possible worlds. However, since this
debate (over so-called ‘sophisticated substantivalism’) mostly concerns metaphysical
issues that are orthogonal to our main interests in this work, we leave it aside.8

8For discussion of this issue, see Pooley (2006) and references therein.
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Part III.

Electromagnetism

51



7. Electromagnetism

Thus, we have seen that the symmetries of Newtonian mechanics provide a guide to
which of its models should be regarded as physically equivalent—and hence, to what
physical structure we should take the theory to be positing. In this part, we again con-
sider how the symmetries of a physical theory provide a guide to its structure: this
time, with the case study of classical electromagnetism. In this chapter, we introduce
the theory and discuss its spacetime symmetries; this will bring out points of analogy
and disanalogy with the spacetime symmetries of Newtonian mechanics. The follow-
ing two chapters discuss the interpretation of a new kind of symmetry that we find in
electromagnetism: its so-called gauge symmetry.

7.1. Electromagnetism on Newtonian spacetime

In discussing electromagnetism, we could have begun with the theory presented in
terms of coordinates, analysed its spatial and temporal symmetries, and then passed to
a formulation that takes those symmetries into account. However, doing so would be
mostly duplicative of the analysis given in the previous Part. So instead, we start by
just asserting to the reader that this coordinate-based formulation admits (at least) the
following symmetries:

• Time translation

• Spatial translation

• Spatial rotation

Note that this time not only time-reversals, but also spatial reflections, are missing.
Again, these are symmetries of the theory (at least on some analyses), but treating them
raises some subtleties that we would rather not have to deal with.1

Skipping the details, taking account of these symmetries motivates employing a three-
dimensional oriented Euclidean space X (with an oriented Euclidean vector space X)

1What to say about time reversal in electromagnetism is especially controversial: for discussion, see
Albert (2000), Malament (2004), Leeds (2006) and Arntzenius and Greaves (2009).
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and a one-dimensional oriented Euclidean time T (with T ∼= R as its associated vector
space). We introduce two X-valued variables p~Eq and p~Bq, to represent (respectively)
the electric field and the magnetic field; we also use an X-valued variable p~jq to represent
the current density, and a real-valued variable pρq to represent the current density.

A kinematically possible model of this theory will consist of time-dependent vector
fields ~E(t, x) : T × X → X, ~B(t, x) : T × X → X, and ~j : T × X → X, and a time-
dependent scalar field ρ : T × X → R. A dynamically possible model consists of such
a set of fields that satisfy Maxwell’s equations:2

div(~E) = ρ (7.1a)

div(~B) = 0 (7.1b)

curl(~E) +
∂~B
∂t

= 0 (7.1c)

curl(~B)− ∂~E
∂t

=~j (7.1d)

Note that if we were not using an oriented Euclidean space, the curl operator would
not be well-defined.3

Unfortunately, this is not the place for a full discussion of the physical significance of
these equations, but very briefly: equation (7.1a) expresses the fact that electrical charge
(represented by ρ) is the source for the electric field ~E, in the sense that the total flux of ~E
through a closed surface is proportional to the charge enclosed therein; equation (7.1b)
expresses the fact that the magnetic field ~B does not have sources, in the sense that the
total flux of ~B through a closed surface is always zero; equation (7.1c) expresses the fact
that an electrical field may be ‘induced’ by a time-varying magnetic field; and equation
(7.1d) expresses the fact that a magnetic field may be induced by a time-varying electric
field or by an electrical current (represented by~j).4

However, this is not the only ‘coordinate-free’ presentation of electromagnetism on
Newtonian spacetime—nor, arguably, the most perspicuous. An alternative presenta-
tion makes use of the language of differential forms.5 In this presentation, we employ
an X∗-valued variable pEq to represent the electric field, a Λ2(X∗)-valued variable pBq
to represent the magnetic field, an X∗-valued variable pjq to represent the current den-
sity and (again) a real-valued variable pρq to represent the charge density. A kine-

2Here and throughout, we use units in which µ0 = ε0 = c = 1.
3See Appendix A.
4Any good textbook on electromagnetism will further discuss these laws; a classic treatment is (Feynman

et al., 2011, Volume II).
5See Appendix C; my discussion follows Baez and Muniain (1994).
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matically possible model consists of time-dependent 1-forms E : T × X → X∗ and
j : T ×X → X∗, a time-dependent 2-form B : T ×X → Λ2(X∗), and a time-dependent
scalar field ρ : T × X → R, that obey the (restated) Maxwell equations

?d ? E = ρ (7.2a)

dB = 0 (7.2b)

dE +
∂B
∂t

= 0 (7.2c)

?d ? B− ∂E
∂t

= j (7.2d)

where ? is the Hodge star on (oriented) Euclidean space.
Thus, we have two theories of electromagnetism on (oriented) Newtonian spacetime,

neither of which employ coordinates. The two are related to one another by the isomor-
phisms discussed in Appendix C, i.e. the musical isomorphism and Hodge duality:
specifically, they are related by

E ≡ ~E[ (7.3a)

B ≡ ?(~B[) (7.3b)

j ≡~j[ (7.3c)

7.2. Lorentz boosts

As with Newtonian mechanics, electromagnetism exhibits a boost symmetry (in addi-
tion to the symmetries of space and time separately). However, rather than Galilean
boosts, the symmetry in question concerns Lorentz boosts. To describe such a boost,
it is easiest to start with the Newtonian vector space T ⊕ X. Let ~v ∈ X, and let
(t⊕~x) ∈ T⊕X. We begin by decomposing ~x into components parallel and perpendic-
ular to ~v:

~x‖ :=
~x ·~v
|~v|2 ~v (7.4a)

~x⊥ := ~x−~x‖ (7.4b)

where ~x ·~v is the Euclidean inner product.
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Then a Lorentz boost along ~v means that we transform T ⊕X according to

t′ ≡ γ(t−~v ·~x‖) (7.5a)

~x′‖ ≡ γ(~x‖ −~vt) (7.5b)

~x′⊥ ≡ ~x⊥ (7.5c)

with ~x′‖ and ~x′⊥ being the parallel and perpendicular components of ~x′, and where the
so-called Lorentz factor γ is given by

γ :=
1√

1− |~v|2
(7.6)

Now let (τ0, x0) ∈ T × X . A Lorentz boost along ~v centred on t0 and x0 acts on an
arbitrary point (τ , x) ∈ T × X as follows: we let ~x := x− x0 and t = τ − τ0, and set

τ ′ ≡ τ0 + t′ (7.7)

x′ ≡ x0 +~x′ (7.8)

with t′ and ~x′ defined as in (7.5).
A Lorentz boost is a symmetry of electromagnetism—provided, that is, that ~E, ~B, ρ

and ~j are also transformed in a certain way. Given ~v ∈ X, decompose ~E, ~B and ~j into
parallel and perpendicular components (as in (7.4)); the transformations are then

~E′‖ ≡ ~E‖ (7.9a)

~E′⊥ ≡ γ(~E⊥ +~v× ~B) (7.9b)

~B′‖ ≡ ~B‖ (7.9c)

~B′⊥ ≡ γ(~B⊥ −~v× ~E) (7.9d)

ρ′ ≡ γ(ρ−~v ·~j‖) (7.9e)

~j′‖ ≡ γ(~j‖ − ρ~v) (7.9f)

~j′⊥ ≡~j⊥ (7.9g)

Note that the transformations for ρ and~j resemble those for t and ~x; this suggests that
we might consider (ρ⊕~j) as a (T ⊕X)-valued vector. However, ~E and ~B transform
quite differently, suggesting that they cannot be so straightforwardly given a four-
dimensional interpretation; we will return to this point below.

A composition of boosts with rotations is referred to as a Lorentz transformation; a
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composition of a Lorentz transformation with a translation (of space and/or time) is
known as a Poincaré transformation.6 Thus, the symmetry group of electromagnetism
includes the Poincaré group. Given this, we can apply much the same arguments we
did in Chapter 5 to argue that the Poincaré-variant data will be autonomous from the
Poincaré-invariant data, and hence that there is no empirical procedure for measuring
such data that can be modelled within electromagnetism.7 This, in turn, gives some
reason for thinking that setting electromagnetism on Newtonian spacetime is inappro-
priate, since in this setting there are well-defined quantities that are not invariant under
Lorentz transformations (such as absolute velocity).

We do need to be careful here, however. The Poincaré-invariance of electromag-
netism means that we cannot expect such quantities to be detectable via any purely
electromagnetic procedure; however, it does not mean that such quantities will not be
detectable at all. In particular, suppose that we were to take our Newtonian theory
from Part II and couple it to our electromagnetic theory, by introducing the Lorentz
force law:

~Fn = en(~E +~v× ~B) (7.10)

where en is the electrical charge on the nth particle. If we analyse the symmetries of
this combined theory, we find that it is limited to the Euclidean symmetries of space
and time.8 So neither Lorentz boosts nor Galilean boosts are symmetries of this theory;
as a result, electromechanical experiments representable by this theory are capable of
detecting Newtonian quantities such as absolute rest.

Indeed, this is (more or less) the situation that physics took itself to be in toward the
end of the nineteenth century: given a Galilei-invariant mechanical theory coupled to
a Poincaré-invariant electromagnetic theory, it appeared that it should be possible to
design experiments that would be capable of detecting different states of absolute mo-
tion (or rather, as it was interpreted, motion relative to the luminiferous aether). Of
course, such experiments (culminating in the Michelson-Morley interferometer) only
delivered null results, thereby suggesting a problem with this joint theory. This was
resolved following Einstein’s postulation of relativistic mechanics, i.e., of a mechanical
theory which had the Poincaré group as its symmetry group: this theory could then be
combined with classical electromagnetism into a Poincaré-invariant theory, hence ex-
plaining the failure of electromechanical experiments to detect Poincaré-variant quan-

6Strictly, these are proper orthochronous Lorentz and Poincaré transformations, since time-reversals and
parity inversions are excluded.

7That said, how exactly to make those arguments relevant to a field theory (such as electromagnetism)
rather than a particle theory isn’t wholly straightfoward: see Wallace (ndb).

8Note, in particular, that the Lorentz force is velocity-dependent (cf. footnote 11).
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tities such as the motion relative to the aether.9 Under the further hypothesis that any
future theories we might develop will also exhibit Poincaré symmetry, we have a moti-
vation to suppose Lorentz boosts to relate physically equivalent models.

7.3. Minkowski spacetime

We therefore seek to determine what substructure of Newtonian spacetime is invariant
under Lorentz boosts. As with Galilean boosts, Lorentz boosts do not preserve the de-
composition of T⊕X into T and X; unlike Galilean boosts, they also fail to preserve
either of these subspaces individually. However, they are linear, and so they do pre-
serve its structure as a vector space. Moreover, they preserve the Minkowski inner prod-
uct, which we define from the temporal and spatial inner products as follows: given
four-vectors ξ = (t⊕~x) and ξ′ = (t′ ⊕~x′) in T⊕X, then

η(~ξ,~ξ′) := tt′ −~x ·~x′ (7.11)

Moreover, the Minkowski inner product is exhaustive of the invariant structure, in
the following sense. First, define a Minkowski vector space as a four-dimensional vector
space equipped with a Minkowski inner product:

Definition 25. Minkowski vector space is a four-dimensional vector space M, equipped
with an inner product of signature (1, 3).10 ♠

Then the automorphisms of an (oriented) Minkowski vector space are exactly the
(proper, orthochronous) Lorentz transformations.11 Since we want our spacetime to
also be invariant under translations (i.e. to be Poincaré-invariant, not just Lorentz-
invariant), we set it not on a Minkowski vector space but on the associated affine space:

Definition 26. Minkowski spacetime is an affine spaceM whose associated vector space
M is Minkowski vector space. ♠

It remains only to restate our theory as a theory set on (oriented) Minkowski space-
time; to do so, we employ the language of differential forms.12 A kinematically possible

9In particular, we modify Newton’s Second Law to replace the mass term mn with (velocity-dependent)
relativistic mass; this means that the theory can exhibit boosts as symmetries despite having velocity-
dependent forces.

10See Appendix A.
11See footnote 6.
12There is also a Poincaré-invariant formulation of the theory in terms of tensor algebra, which has not

been developed here: see e.g. (Malament, 2012, §2.6) for a presentation.
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model of this theory consists of a 2-form F, representing the electromagnetic field, and a
1-form J representing the covariant current density. A dynamically possible model is one
which satisfies the following equations:

dF = 0 (7.12a)

?d ? F = J (7.12b)

where ? is the Hodge star operator on oriented Minkowski spacetime.
This is related to the formulation on Newtonian spacetime as follows. First, we define

t as the unique covector in (T ⊕X)∗ such that for any (t⊕~x) ∈ T⊕X,

t(t⊕~x) = t (7.13)

Equivalently, t is the covector in T∗ that is dual to the (positive) unit vector in T, re-
garded as a covector in (T ⊕X)∗ = T∗ ⊕X∗. We also use t to denote the 1-form on
T × X that always takes the value t.

Next, we think of E, B and j as differential forms on T × X , rather than as time-
dependent forms on X (by thinking of them as taking values in (T ⊕X)∗ rather than
X∗). We then define a 2-form F and a 1-form J on T × X by

F ≡ B + E ∧ t (7.14)

J ≡ ρt− j (7.15)

It can then be shown that substituting these expressions into (7.12) yields the equations
(7.2).13 Moreover, under a Lorentz boost,

F′(τ ′, x′) = F(τ , x) (7.16)

J′(τ ′, x′) = J(τ , x) (7.17)

where F′ is defined by putting together equations (7.3), (7.9), (7.14), and (7.13), and
similarly for J′.

Thus, in sum: we began this chapter with a theory whose models were set on New-
tonian spacetime T × X , and the data for which consisted of background fields ρ and
~j, and dynamical fields ~E and ~B (equivalently, background fields ρ and j, and dynam-
ical fields E and B). Spatial rotations and spatiotemporal translations related isomor-
phic models; however, a Lorentz boost produced a non-isomorphic model. However,

13See (Baez and Muniain, 1994, Chap. I.5).
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we have now demonstrated how to define the structure of Minkowski spacetime from
that of Newtonian spacetime, and how to define a 1-form J and a 2-form F, in such a
way that for any model of Newtonian spacetime, the original and transformed currents
and fields are isomorphic to one another. This concludes our study of the spacetime
symmetries of electromagnetism; in the next chapter, we turn to discussing its gauge
symmetry.
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8. Gauge transformations of
electromagnetism

In this chapter, we introduce the gauge symmetry of electromagnetism: this differs from
the symmetries considered so far in being a non-spatiotemporal symmetry, and a local
symmetry. First, we present an alternative formulation of electromagnetism in terms of
the electromagnetic potential; we then discuss its gauge symmetry, and consider how it
relates to the formulation in terms of the electromagnetic field.

8.1. The electromagnetic potential

Consider again the homogeneous Maxwell equation:

dF = 0 (8.1)

There is a reasonably basic fact about exterior derivatives, namely that the exterior
derivative of an exterior derivative vanishes: for any differential form K,

ddK = 0 (8.2)

This basic fact has a less basic converse: that for any differential form with vanishing
exterior derivative on a contractible space, there is some differential form of which it is
the exterior derivative. Intuitively, a contractible space is one which can be ‘continu-
ously deformed’ into a point.1 A differential form with vanishing exterior derivative is
said to be closed, and a differential form which is the exterior derivative of another is
said to be exact; so we can state the basic fact by saying that every exact form is closed,
and can state the less basic converse by saying that every closed form on a contractible
space is exact.

Hence, given a solution to (8.1) on a contractible space, there must exist a 1-form A

1More precisely, a space is contractible if the identity map on that space is homotopic to a constant map.
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such that
F ≡ dA (8.3)

This 1-form is typically referred to as the electromagnetic potential. We can use this to
translate the Lorentz-invariant Maxwell theory into the language of A: the homoge-
neous equation (8.1) becomes the triviality ddA = 0, while the inhomogeneous equa-
tion (7.12b) becomes

? d ? dA = J (8.4)

Note that we do not describe this a re-expression of Maxwell’s equations in terms of
potentials; whether this equation captures exactly the same content as (7.12b) will be
our question in much of this chapter.

If we are working with Newtonian spacetime, then just as the electromagnetic field
can be ‘decomposed’ into electric and magnetic fields, so the electromagnetic potential
can be decomposed into an electric potential φ (a scalar field) and a magnetic potential
~A (a vector field), according to

A = φt− ~A[ (8.5)

These are related to the electric and magnetic fields via

~B ≡ curl(A) (8.6a)

~E ≡ − grad(φ)− ∂~A
∂t

(8.6b)

In effect, these are the Newtonian expression of equation (8.3).2

8.2. Gauge symmetry

We now turn to the fact that this theory admits an internal gauge symmetry: for any
smooth function λ :M→ R, the transformation

A′ ≡ A + dλ (8.7)

is a symmetry of (8.4); this becomes clear when we recognise that the electromagnetic
field F is invariant under this transformation.

This symmetry is importantly different to the symmetries we have discussed so far.
For one thing, it is our first example of a non-spatiotemporal symmetry. For another,

2This comes about as a result of the relationship between the exterior derivative and the vector-calculus
operators: see Appendix A.
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it is a local symmetry. Whereas a given Euclidean, Galilean, Lorentz or Poincaré trans-
formation is given by specifying the values of some finite number of parameters (e.g.
by specifying a given rotation matrix and the velocity vector ~v of a Galilean boost), an
electromagnetic gauge transformation is given by specifying a certain scalar field.

Mathematically, this means that the space of gauge transformations is far larger and
richer than the space of Euclidean (etc.) transformations. Physically, it has the imme-
diate consequence that, in a certain sense, the above theories of electromagnetism are
indeterministic. For, since we can choose any smooth function λ, we can choose λ to be
zero (or constant) at all times before some specified time t0, but non-constant for at least
some period of time thereafter. So the gauge transformation induced by this λ will be
trivial before t0, and non-trivial on at least some part of spacetime later than t0. Now
take any solution A for some fixed J. By the definition of symmetry, A + dλ is also a
solution, for that same J; but by construction, both solutions agree at all times before
t0. So, a solution is not uniquely determined by its data prior to some given time, and
hence the theory is indeterministic. Indeed, extending this argument shows that the
theory is indeterministic in an even stronger sense than this: we could specify A at all
times other than a brief window ∆t, and at all places other than a small spatial region
R, and we would still not be able to uniquely determine the value of A within R during
the time period ∆t.3

This indeterminism means that the argument for the empirical redundancy of symmetry-
variant data cannot be carried out quite as straightforwardly as in Chapter 5, since
states of this theory no longer have unique time-evolutes. However, since the inde-
terminism in question arises from the symmetry itself, if we have two ∆t-evolutes S1

and S2 of a given state S0, then we can guarantee that S1 and S2 are themselves related
by a symmetry transformation. It follows that if S′0 is the result of applying a gauge
transformation to S0, then any ∆t-evolute of S′0 is gauge-equivalent to any ∆t-evolute
of S0. This is all we need for the argument of Chapter 5 to go through, and so we can
conclude that anything which varies under a gauge transformation—such as the value
of the gauge potentials—is empirically otiose.4

3This argument is modelled on Earman and Norton (1987)’s presentation of the ‘Hole Argument’: the
argument that the diffeomorphism symmetry of General Relativity (another species of local symmetry)
leads to, as they put it, ‘radical local indeterminism’. Indeed, radical local indeterminism of this kind
is a generic feature of theories with local symmetries; see Wallace (2003) for further discussion.

4Indeed, in a certain sense the gauge potentials are even less empirically accessible than the other
symmetry-variant quantities we have considered, since a gauge transformation on a subregion of
spacetime (that vanishes at the boundary) is also a symmetry of any larger region of spacetime, which
precludes measuring gauge potentials by experiments conducted outside the system. See the references
in footnote 8, as well as Teh (2016), Gomes and Butterfield (nd), and Wallace (ndb).
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8.3. Fields and potentials

So, we have introduced the electromagnetic potential; demonstrated that it exhibits
gauge symmetry; and concluded that we would like a formulation of the theory which
is appropriately gauge-invariant. At this point, one might make the observation that
the electromagnetic field is a gauge-invariant object—indeed, this was the observation
that led us to recognise the gauge-symmetry of the potential-theory in the first place.
So have we not come full circle: introducing the potential-theory only to conclude that
we were better off with the field-theory?

One response to this is to note the various ways in which the potential-theory can be
useful, even if we think that the field-theory does a better job of capturing the physical
content of electromagnetic phenomena: in various situations, it is easier to solve the
differential equations governing the potential (often by imposing a particular choice
of gauge) than those governing the field. This idea is worth exploring, but there is a
prior question we should ask: can we treat the field-theory and the potential-theory as
interchangeable? That is, should we regard these as equivalent theories? We obtained
the potential-theory by substituting certain expressions into the field-theory, i.e. by
applying a certain kind of translation to the field-theory; but as we discussed in Chapter
2, there is no guarantee (in general) that the image of a theory under a translation will
be equivalent to the original theory.

And, in fact, there are good reasons for thinking that these two theories should not
be regarded as equivalent—at least, not without certain important qualifications. In
Chapter 2, we saw that one of the marks of equivalent theories was the existence of an
appropriate bijection between the models of those theories. We can use the definition
(8.3) to induce a map from models of the potential-theory to models of the field-theory.
If this map is not bijective, then that is at least some grounds for thinking that the two
theories in fact have somewhat different contents.

So first: is this map surjective? This will be so if, given any model F of the field-theory,
there is some model A of the potential-theory (for the same source J) such that F = dA.
When we introduced the notion of the vector potential we gave a partial answer to this
question, by noting that every closed form on a contractible space is exact. So as long as
we are exclusively doing electromagnetism on contractible spaces, this map is indeed
surjective.

If we relax that condition, however, then we can find electromagnetic fields to which
no potential corresponds. For example (using Newtonian spacetime), consider a ‘mag-
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netic monohole’:5 a static vacuum solution, set on Euclidean space with a point re-
moved, where ~E = 0 and ~B is radially directed away from the hole at inverse-square
magnitude. (In spherical coordinates centred on the hole, this means that ~B = 1

r2 r̂, r̂
being the unit radial vector.)

Figure 8.1.: A magnetic monohole.

This is a solution to Maxwell’s equations. Yet there can be no vector potential ~A such
that ~B = ∇× ~A: for any vector field ~A, by Stokes’ theorem the integral of ∇× A over
any closed surface must vanish; yet the integral of ~B over the unit sphere (centred on
the missing point) is 4π. Hence, it cannot be the case that ~B = ∇× ~A.

Of course, the physical significance of this observation is highly dubious—if Maxwell’s
equations are correct, and if there are not random punctures in space, then an example
like the above could not arise. Nevertheless, it does indicate one sense in which the
potential-based theory might be thought to more strongly preclude magnetic monopoles
than the field-based theory: if a magnetic monopole were to exist, then we could still
use the field-based version of Maxwell’s equations to represent the physical situation

5This is a bad pun: a magnetic monopole is a ‘source’ for the magnetic field, in the sense of being a point
where div(~B) 6= 0; this example is obtained by taking a magnetic monopole and removing the point
where the monopole is located, hence ‘monohole’.

64



around the monopole, whilst the potential-theory would break down more thoroughly.
So insofar as we are seeking to get a handle on what these two theories say, this points
to one sense in which they come apart.6

Second: is this map injective? We know right away that the answer must be nega-
tive, since gauge-equivalent potentials yield the same electromagnetic field. But this a
bit of a trivial answer. Clearly, if gauge-equivalent potentials are regarded as physically
distinct, then we shouldn’t expect the two theories to have the same content. The more
interesting question, therefore, is: is this map injective as a map from gauge-equivalence
classes of potentials to fields? That is, could we have a pair of potentials A and A′ which
generate the same field (i.e. which are such that dA = dA′), but which are not gauge-
related (i.e. for which there is no λ such that A′ = A + dλ)? Again, if we confine
attention to contractible spaces the answer to this question is ‘yes’: for on such a space,
d(A′ − A) = 0 entails that A′ − A = dλ. Together with the observation above, this
implies that over contractible spaces, the map is a bijection between gauge-equivalence
classes of potentials and fields; in Chapter 12, we’ll see how to strengthen this observa-
tion.

But on spaces which are not contractible, the argument just given breaks down; this
opens the prospect that one might have empirically distinguishable potentials that nev-
ertheless are associated with the same field. The best-known example of a phenomenon
of this kind—the Aharonov-Bohm effect—is the topic of the next chapter.

6That said, this divergence between the two theories can be corrected if we move to the fibre-bundle for-
mulation of the potential-based theory (discussed briefly in the following chapter), and admit bundles
which are not ‘globally trivialisable’.
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9. The Aharonov-Bohm effect

9.1. Potentials around a solenoid

We finished the last chapter with the claim that we can have a pair of electromagnetic
potentials that give rise to the same electromagnetic field, but which are not related by
a gauge transformation: that is, which are (let us say) field-equivalent but not gauge-
equivalent. We now construct an example of such a case.1 We work in Newtonian
spacetime, where a (Cartesian) coordinate system for space has been chosen.

A solenoid consists of a coil that is tightly wound into a helix; passing wire through
the coil generates a magnetic field inside the coil (see Figure 9.1). Let I be the current

Figure 9.1.: A solenoid, showing the magnetic field.

through the coil, and let n be the number of times the coil wraps around per unit length.
If we idealise such a solenoid as infinitely long, and suppose it to be oriented along the

1For more detailed derivations of the results discussed here, see (Feynman et al., 2011, §§13–14).
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z-axis, then we find that the magnetic field inside the solenoid is Bx = By = 0, Bz = nI,
and that the magnetic field outside the solenoid vanishes. On the other hand, the vector
potential outside the solenoid does not vanish: if the radius of the solenoid is R, then
the vector potential ~A at any point (x, y, z) is given by

Ax = −nIR2y
2r2 (9.1)

Ay =
nIR2x

2r2 (9.2)

Az = 0 (9.3)

where r =
√

x2 + y2 (i.e. the radial distance from the solenoid).
Thus, if we confine our attention to the region outside the solenoid,

U := {(r, z) : r > R,−∞ < z < ∞} (9.4)

then the vector potential ~AI when the solenoid is switched on is field-equivalent to the
vector potential ~A0(= ~0) when the solenoid is switched off (since in both cases, the
magnetic field outside the solenoid vanishes). However, ~AI is not gauge-equivalent to
~A0: that is, it is not the case that there is some scalar field λ such that ~AI = ~∇λ. As with
the magnetic monohole, we can see this by using Stokes’ theorem: if it were the case
that ~AI = ~∇λ, then the line integral of ~AI around a closed loop enclosing the solenoid
would have to vanish (since it would be equal to the integral of curl(~∇λ) = 0 over the
surface of the loop). However, the integral of ~AI around such a loop does not vanish,
as we can see by either direct calculation or by noting that it is equal to the flux of ~BI

through that loop (again, using Stokes’ theorem).
As discussed in the previous chapter, this coming-apart of gauge-equivalence and

field-equivalence is only possible in spaces that are not simply connected: ~A0 and ~AI

are only field-equivalent over U, not over the whole region including the interior of the
solenoid. This also means that since ~A0 and ~AI are field-equivalent over any subregion
of U, they must also be gauge-equivalent over any such subregion which is simply
connected. For example, consider the regions U1 and U2, defined as follows:

U1 = {(x, y, z) : R < r < ∞, x ≥ 0,−∞ < z < ∞} (9.5)

U2 = {(x, y, z) : R < r < ∞, x ≤ 0,−∞ < z < ∞} (9.6)

U1 and U2 are illustrated in Figure 9.1; note that U1 ∪U2 = U. We define two functions
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Figure 9.2.: The regions U1 and U2 (the solenoid and the plane both continue in the
positive and negative z-direction).

θ1 : U1 → R and θ2 : U2 → R, by the conditions

tan(θ1) =
y
x

, 0 ≤ θ1 ≤ π (9.7)

tan(θ2) =
y
x

, π ≤ θ1 ≤ 2π (9.8)

We have to specify the ranges for θ1 and θ2 in order to uniquely fix them as functions
(since tan is a periodic function).

Then on U1, ~AI is given by

~AI =
nIR2

2
grad(θ1) (9.9)
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and similarly on U2. Hence, on either of U1 or U2 individually, ~AI is gauge-equivalent
to ~A0—as we expected, given that U1 and U2 are simply-connected subregions of U.
The reason we cannot parlay this into a demonstration that ~AI is gauge-equivalent to
~A0 over all of U is that the two functions θ1 and θ2 cannot be combined into a single
smooth function: they come apart along the positive x-axis, where θ1 = 0 and θ2 = 2π.
It follows that the definition (8.3) of the electromagnetic field in terms of the potential
does not induce an injective map from gauge-equivalence classes of potential-models
to field-models.

Hence, if gauge-equivalence is our condition of physical equivalence, then we reach
the following conclusion: switching the solenoid on should not produce any empiri-
cally detectable difference in the region U1, nor in the region U2, but it might produce
such a difference in the region U. We don’t have any guarantee that such a difference
will be detectable—but the possibility of such differences is not ruled out by our stance
on gauge transformations. In fact, it turns out that although there is no known classical
experiment that is capable of detecting this difference, there is a quantum experiment
that can do so. Let us see how that goes.

9.2. Quantum charges in classical electromagnetism

The Aharonov-Bohm effect, as standardly derived, takes place in the context of what
we might call ‘semi-classical electromagnetism’: the theory of a quantum point charge
moving against the backdrop of a classical electromagnetic field. We are, by now, famil-
iar with the classical electromagnetic field; in this section, I give a thumbnail sketch of
what we need to know about the quantum particle. The theory governing that particle
is non-relativistic, so we take the background spacetime to be Newtonian rather than
Minkowskian.

For our purposes, we will take such a particle to be represented by its wavefunction:
a function ψ : T × X → C, where C is the complex plane. The dynamics of this
wavefunction is given by the Schrödinger equation, which for a particle of charge e and
mass m moving in a magnetic vector potential ~A (and zero electric field) is

∂ψ

∂t
=

i
2m

(
∇− ie~A

)2
ψ (9.10)

In turn, the wavefunction yields a probabilistic guide to the measured location of the
electron:2 if the wavefunction at a given time t is ψ(t), then the electron’s probability

2Exactly how the wavefunction does this is a topic we deliberately pass over in silence.
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density over possible locations is given by |ψ|2.
We won’t go into the details of this equation, but instead just note two things about

it. First, it directly features the magnetic vector potential, not the magnetic field. Our
first impression, therefore, might be that the magnetic vector potential enjoys a more
significant status in this theory than in the theory of classical electromagnetism. This
impression is undermined, however, by our second observation: that the Schrödinger
equation (9.10) admits a local gauge symmetry of the form

ψ 7→ eieλψ (9.11)

~A 7→ ~A +∇λ (9.12)

where λ is an arbitrary smooth scalar field. Noting that |eieλψ|2 = |ψ|2, we make the
assumption that this symmetry implies empirical undetectability in the same way the
other symmetries we have examined do.3

However, as we have just seen, there is a difference between the claim that there is
no empirical difference between gauge-equivalent potentials, and the claim that there
is no empirical difference between field-equivalent potentials: the latter claim is strictly
stronger, at least insofar as we consider non-simply-connected spaces. And in fact, we
can use this quantum particle to pry open the difference between these two claims, via
a variant of the famous double-slit experiment. A beam of charged particles is sepa-
rated; the two component beams pass around opposite sides of a solenoid (which we
shield from the beams) before being recombined as they meet a detector screen. When
the solenoid is turned off, this corresponds to the standard double-slit experiment, and
we get interference fringes on the screen. When the solenoid is turned on, however,
we find that there is a shift in the interference fringes, which the above theory can ex-
plain as a consequence of the phase-shift induced in the electron’s wavefunction by
~AI (since the wavefunction dynamics depend on ~A via (9.10)). The magnitude of the
shift is proportional to the result of integrating ~AI along the two ‘arms’ of the experi-
ment and taking the difference; that is, it is proportional to the integral of ~AI around
a loop enclosing the solenoid (which is, as we’ve already discussed, equal to the total
magnetic flux through the solenoid). This shift, first predicted by Aharonov and Bohm
(1959)—and subsequently experimentally verified to a high degree of precision—is the
Aharonov-Bohm effect. Note that in order to manifest the effect, we need to make use of
the whole region U: that is, the effect cannot arise if our experiments are limited to one
side of the solenoid or the other (i.e., to the regions U1 and U2).

3For a more detailed account of the empirical implications of quantum symmetries, see Wallace (ndc).
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9.3. The reality of the fields

In most discussions of the Aharonov-Bohm effect, it is framed as a problem for a view
which takes only the electromagnetic field to have ‘physical reality’: such a view is
problematic, goes the thought, because it is committed to an unpalatable form of non-
locality (whereby the magnetic field within the solenoid is able to exert an ‘action at a
distance’ on the particle).4 Our interests are slightly different, and hence so is our fram-
ing of the effect: for us, the effect is primarily to be understood as a vivid demonstration
of the problems with regarding the field-theory and the potential-theory as equivalent,
even if the latter is interpreted with gauge-equivalence as sufficient for physical equiv-
alence.

That said, if these two theories are not to be considered equivalent, then we should
consider them to postulate different structures; hence, there is a choice to be made be-
tween them. The fact that the fields theory is seemingly committed to this kind of
non-locality seems like a good reason to prefer the potential-theory, but then we have
the question: if we would like to regard gauge-equivalent states as physically equiva-
lent, and committing to the field theory is not a good way of doing so, what should we
do instead?

One alternative is to look for some other set of invariants, around which a theory
can be constructed that is plausibly regarded as equivalent to the potentials theory
(when gauge-equivalent models of the latter are interpreted as equivalent). For ex-
ample, one proposal that has received a lot of attention in the philosophical literature is
the so-called holonomy interpretation.5 Given a magnetic vector potential ~A, the holon-
omy of any loop in X is the integral of ~A around that loop.6 Like the magnetic field,
the holonomy of a loop is gauge-invariant; but unlike the magnetic field, specifying
all the holonomies in a given region fixes the vector potential in that region to within
gauge equivalence. However, although the holonomies do therefore capture the gauge-
invariant data, it is not so clear how to construct a theory out of them: that is, how the
equations of motion (for either the purely electromagnetic degrees of freedom, or for a
charged particle coupling to them) are to be written down.

Another alternative is to resist the call to rewrite electromagnetism in terms of strict
invariants, rather than in terms of covariants. That is: when discussing spacetime sym-

4See e.g. Healey (1997), Maudlin (1998), Belot (1998), Leeds (1999), Nounou (2003), Maudlin (2018), and
references therein.

5See Healey (2007).
6There is a sense in which the magnetic field can be thought of as giving a strict subset of the holonomy

data: the magnetic field at a point x ∈ X is the holonomy around an infinitesimal loop centred on x.
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metries (whether of Newtonian mechanics or electromagnetism), we took those sym-
metries to motivate the move to a weaker spacetime setting—Newtonian spacetime
rather than coordinate space, then Galilean or Minkowski spacetime rather than New-
tonian spacetime. However, in a certain sense the structures that arise in Galilean space-
time are not invariants of the Galilean group. When we apply a Galilean transformation
to a model set on Galilean spacetime, it is not that the model remains fully invariant
under that transformation; rather, the model is covariant under it, in the sense that we
obtain a new model which nevertheless is isomorphic to the first. So, what if we take a
similar attitude toward electromagnetism?7

This would mean looking for a formalism in which gauge transformations, although
definable, are isomorphisms. An example of such a formalism would be the so-called
fibre bundles formalism. Unfortunately, that formalism is sufficiently technical that we
won’t have space to present it in detail, but very roughly: rather than treating fields as
functions from spacetime to some fixed value-space, a fibre bundle equips each space-
time point with its own value-space and treats a field as mapping each spacetime point
into that spacetime point’s value-space; because the value-spaces associated to differ-
ent spacetime points are not identified with one another, a question such as ‘is the value
of the field at x the same as the value of the field at y?’ ceases to make sense. This is
necessary, since a gauge transformation acts differently at different points of spacetime:
if this is to count as an isomorphism, then we can’t be allowed to ask such questions
(since the answer to such a question could change, if we apply a gauge transformation
that vanishes at x but not at y).

As a final observation, we note that both the holonomy and fibre-bundle formalisms
are non-separable, in the sense that specifying the physical state in certain regions does
not (in general) suffice to specify the state on the union of those regions. For example,
fixing the holonomies in U1 and U2 does not determine the holonomies throughout
U—indeed, the Aharonov-Bohm effect is based on the fact that the holonomy of a loop
around the solenoid is not determined by the holonomies of loops that do not enclose
the solenoid. Although we haven’t said enough to really explain why, a similar thing
is true for fibre bundles: fixing a model of the fibre-bundle formalism over U1 and over
U2 does not uniquely determine a model over U.

The reason for this is that non-separability is an immediate consequence of regarding
gauge equivalence as necessary and sufficient for physical equivalence (once we recog-
nise that gauge-equivalence over subregions need not entail gauge-equivalence over
the whole region). As discussed above, the potentials ~A0 and ~AI are gauge-equivalent

7The difference between these two attitudes is discussed in more detail in Dewar (2019b).
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over U1 and U2, but not over U—even though U = U1 ∪U2. Hence, we can say that
the physical state of U1 is the same regardless of whether the solenoid is on or not, and
the same for the physical state of U2; and yet, that the physical state of U does change
depending on the solenoid. So this interpretational stance carries a commitment to non-
separability with it; and that commitment will be reflected in any formalism that seeks
to implement that stance.8

8That said, Wallace (2014) argues that we can have both nonlocality and gauge-invariance; how this
squares with the argument here is not entirely clear to me.
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Part IV.

Categories

74



10. Introduction to category theory

In this final part of the book, we look at some of the ways in which category theory offers
a means of formalising some of the concepts of structure and equivalence that we have
encountered so far; in particular, at how we can use categorical notions to bring together
the logical and physical examples. In this chapter, we introduce the notion of a category,
and look at some examples of categories.1

10.1. Motivation and definition

In our investigations, we have encountered various definitions of the form ‘a wotsit is
a set, equipped with such-and-such bells and whistles’: for example, Tarski models,
vector spaces, or groups. The result of such definitions is that we get a collection of
‘structured sets’ (e.g. groups), which have ‘structure-preserving mappings’ (e.g. group
homomorphisms) between them. One way of approaching category theory is to note
that a lot of the interesting mathematical information gets encoded in these mappings.
For example, a subgroup N of a group G is a normal subgroup (i.e. is invariant under
conjugation) iff there is some group homomorphism φ : G → H such that N is the ker-
nel of φ; so, roughly speaking, if you knew all the facts about group homomorphisms,
then you could figure out which subgroups are normal. This motivates the study of the
networks of structure-preserving mappings, and the development of a theory of such
mappings: i.e., the postulation of axioms that any such collection of mappings should
obey. We refer to such a network as a category, and axiomatise this notion as follows.

Definition 27. A category C consists of a class |C| of objects and a class Hom(C) of arrows
(also often referred to as morphisms), such that:

• Every arrow f ∈ Hom(C) is associated with a pair of objects A and B of C, referred
to as its domain and codomain: we denote this by writing f : A→ B.

• For any two arrows f : A → B and g : B → C, there is a third arrow from A to C
called the composition of f and g, and denoted g ◦ f .

1For more on category theory, see Awodey (2010) or Halvorson (2019).

75



• Composition is associative: given three arrows f : A → B, g : B → C, and h : C →
D,

h ◦ (g ◦ f ) = (h ◦ g) ◦ f (10.1)

• Associated with every object A in C there is an identity arrow IdA : A → A: this
arrow has the property that for any arrow f : A→ B, IdB ◦ f = f = f ◦ IdA.

♠

Given any two objects A and B in a category C, the set of all arrows with domain A
and codomain B will be denoted C(A, B).

You should satisfy yourself that these axioms seem plausible conditions for the gen-
eral notion of structure-preserving mappings between structured sets. Indeed, the fol-
lowing are all examples of categories:

• The category Grp, with groups as objects and group homomorphisms as arrows

• The category Vec, with vector spaces as objects and linear maps as arrows whose
objects are vector spaces and whose arrows are linear maps

• The category Set, with sets as objects and functions as arrows

(Exercise: demonstrate that the above examples are indeed categories.)
However, having postulated those axioms, we can then study the structures that obey

them without regard for whether all those structures are interpretable as collections
of mappings or not; this is analogous to the way that group theory postulates some
axioms intended to capture the notion of a set of transformations, but then goes on to
study anything satisfying those axioms without necessarily thinking of it as a set of
transformations. In other words, we abstract away from ‘concrete categories’ such as
the above, to study all algebraic structures satisfying the axioms.2 To illustrate this, here
are some further examples of categories.

10.2. Examples

For categories with finitely many objects and arrows, we can explicitly describe the
structure of the category. We start with a couple of examples of categories of this kind.

2This is not intended as a claim about the actual history of the development of category theory; for that
history, see (Marquis, 2020, §2).
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Example 2. The category 2 contains two objects, which we will label X and Y; it contains
the identity arrows IdX and IdY (as it must) and one non-identity arrow f : X → Y. We
can depict this category, as follows:

X Y
f

IdX IdY

2 is quite a boring category, but not the most boring: that honour belongs (arguably)
to its little cousin 1.

Example 3. The category 1 contains a single object X, and only the single arrow IdX:

X

IdX

Let’s go wild, and consider a category with three objects. (Incidentally, these names—
1, 2 and 3—are not especially canonical, so don’t be surprised if other books use differ-
ent names for these categories, or use these names for different categories.)

Example 4. The category 3 has three objects X, Y, Z, and contains non-identity arrows
f : X → Y, g : Y → Z, and h : X → Z, where

h = g ◦ f (10.2)

This category has the following diagram, where (as is usual) we no longer bother to
draw the identity arrows:

X Y Z
f

h

g

Note that if we hadn’t specified the compositional relation (10.2), it would have been
ambiguous how many arrows there are in the category in total; in general, specifying a
category requires specifying the compositional structure among the arrows. This means
that one has to be a little careful in using diagrams like the above to depict categories;
in most instances, there is a (perhaps implicit) convention that the diagram commutes.
Just to make this point clear, consider the following category:

Example 5. The category 1′ (whose name will be explained in the next chapter) has two
objects X and Y, and non-identity arrows f : X → Y and g : Y → X, where

g ◦ f = IdX (10.3a)

f ◦ g = IdY (10.3b)
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We give the diagram of this category as follows:

X Y
f

g

Here, if we did not require that the compositional relations (10.3) held, then the cat-
egory would have an infinite number of arrows: all the results of composing f and g
together arbitrarily many times!

In the category 1′, g and f are said to be inverse to one another. More generally:

Definition 28. For any arrow f : X → Y in a category C, an arrow g : Y → X is said to
be inverse to f if g ◦ f = IdX and f ◦ g = IdY. ♠

This leads to the category-theoretic definition of isomorphism: an isomorphism is just
an invertible arrow.

Definition 29. An arrow f : X → Y in a category C is an isomorphism if there exists an
inverse arrow f−1 : Y → X. ♠

Note that identity arrows are self-inverse, and hence are always isomorphisms. A
category like 1′ in which every arrow is an isomorphism is referred to as a groupoid.

We’ve seen already that classes of mathematical objects with structure-preserving
mappings between them often constitute a category; certain mathematical objects can
themselves be regarded as categories, as we now discuss.

Example 6. A partial order is a set X equipped with a binary relation ≤ that is reflexive,
transitive, and antisymmetric: that is, for any x, y ∈ X,

x ≤ x (10.4)

x ≤ y, y ≤ z⇒ x ≤ z (10.5)

x ≤ y, y ≤ x ⇒ x = y (10.6)

Any partial order can be considered to be a category, with the objects being the elements
of X, and with (exactly one) arrow between any pair of objects that stand in the relation
≤. The composition of an arrow from x to y with an arrow from y to z is defined as the
arrow from x to z, which is guaranteed to exist by transitivity. For any x, we take Idx to
be the arrow from x to itself (whose existence is guaranteed by reflexivity).

The category 2 can be regarded as a category of this kind, arising from the two-
element partial order where one element is greater than the other.
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Example 7. A preorder is a set X equipped with a binary relation . that is reflexive and
transitive, but not (necessarily) antisymmetric: so there can be x 6= y in X such that
x . y and y . x. As with a partial order, any preorder can be regarded as a category
with exactly one arrow between any pair of objects that stand in the relation ..

Example 8. Any set X can be regarded as a category: one with no arrows other than
the identity arrows. (Such a category is referred to as a discrete category.)

To be clear, the fact that any set can be regarded as a (discrete) category is distinct
from the fact that there is a category Set of sets: it is both the case that any individual set
can be regarded as a category, and that the collection of all sets forms a category.3

Example 9. A group G can be considered to be a category, with exactly one object and
the group elements being the arrows (all of them arrows from that one object to itself).
Composition of arrows is identified with group multiplication, and the identity arrow
is identified with the group identity element; the group axioms then guarantee that the
categorical axioms are satisfied.

Since every element of a group has in inverse, a group (regarded as a category) is one
where every arrow is an isomorphism—i.e., a groupoid.

As with sets, the fact that every group can be regarded as a category is distinct from
the fact that there is a category Grp of groups; rather, the point is that an individual
group (say, the Lorentz group) may be regarded as a category. Note that when we
regard a set as a category, the elements of the set get represented as objects; by contrast,
when we regard a group as a category, the elements of the group get represented as
arrows. This reinforces the point that in many (arguably, most) categories, it is the
arrows that carry the interesting structure. Our final example also demonstrates this
point (and will be discussed further in the next chapter).

Example 10. We define a category Mat as follows. The objects of Mat are the natural
numbers, and the arrows in Mat from m to n are (all) the real n×m matrices; composi-
tion of arrows is given by matrix multiplication (i.e. given M : m → n and N : n → p,
N ◦ M = NM) and the identity arrows are the identity matrices.4 This is a category:
if M is an n× m matrix and N is a p× n matrix, then NM is a p× m matrix; and ma-
trix multiplication is an associative operation, for which the identity matrices act as
identities.

3Similarly, there is a category Pos which has all partially ordered sets as its objects, and order-preserving
maps as its arrows; this should not be confused with the fact that any partially ordered set can be
regarded as a category.

4See Appendix A.
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11. Functors between categories

11.1. Functors

In considering mathematical objects of a certain kind, one often wants to know how
they relate to other kinds of mathematical object. In the context of category theory,
the standard tool for making these kinds of comparison is the functor. A functor is a
‘homomorphism of categories’; its precise definition is as follows.

Definition 30. Let C and D be categories. A functor F from C to D consists of

1. a map Fobj : |C| → |D|; and

2. for every A, B ∈ |C|, a map FAB : C(A, B)→ D(Fobj(A), Fobj(B))

such that the following two conditions hold:

• For any f : A→ B and g : B→ C in C,

FAC(g ◦ f ) = FBC(g) ◦ FAB( f ) (11.1)

• For any A ∈ |C|,
FAA(IdA) = IdFobj(A) (11.2)

♠

In the interests of reducing notational clutter, we will typically just use F to denote
the maps Fobj and FAB (for any A, B ∈ |C|); the argument of the map will make it clear
which one is meant. Hence, for example, the equations (11.1) and (11.2) can be written
as

F(g ◦ f ) = F(g) ◦ F( f ) (11.3)

F(IdA) = IdF(A) (11.4)
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To illustrate the idea, let’s look at some examples of functors. Here is a functor F :
2→ 1′:

F(A) = X (11.5)

F(B) = Y (11.6)

F( f ) = j (11.7)

Note that we don’t need to specify what F does to the identity arrows: once we’ve
specified F’s action on objects, it must sent IdX to IdF(X), by condition (11.2). In the
other direction, here’s a functor G : 1′ → 2:

G(X) = A (11.8)

G(Y) = A (11.9)

G(j) = G(k) = IdA (11.10)

Naturally, these examples are a bit trivial. Here is a less trivial example: as discussed
in Appendix B, every vector space may be regarded as a group (with vector addition as
the group operation). This means that there is a functor from the category Vec of vector
spaces to the category Grp of groups: it maps any vector space to itself, or—perhaps
better—to the ‘copy’ of itself that lives in the category of groups.

As already mentioned, functors are structure-preserving mappings between cate-
gories. As we discussed in the last chapter, collections of objects with structure-preserving
mappings between them are paradigm cases of categories, and this example is no dif-
ferent. Indeed, if we compose two functors F : C → D and G : D → E , then we find
that the result is a functor G ◦ F : C → D. Moreover, this composition operation is asso-
ciative (H ◦ (G ◦ F) = (H ◦ G) ◦ F), and for every category C, there is an identity functor
IdC : C → C which maps every object and arrow in C to itself (you should convince
yourself that this does, indeed, satisfy the definition of a functor). So there is a category
of categories, denoted Cat, whose objects are categories and whose arrows are functors.

11.2. Equivalence functors

However, this does not mean that any two categories related by a functor should be re-
garded as equivalent, any more than the existence of a homomorphism between groups
means those should be regarded as equivalent. So when should we regard two cate-
gories as structurally equivalent? One natural proposal is to do so when they are iso-
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morphic, which we can cash out in category-theoretic terms (given that, as we’ve just
observed, there is a category of categories):

Definition 31. Given categories C and D, a functor F : C → D is an isomorphism of
categories if there is a functor G : D → C such that G ◦ F = IdC and F ◦ G = IdD. ♠

However, for many purposes a somewhat weaker notion is useful: that of categori-
cal equivalence. Indeed, as we will discuss in the next chapter, the fact that categories
admit this interestingly weaker notion accounts for much of the interest in category
theory as a way of making precise certain ideas about equivalence in philosophy of sci-
ence. Essentially, an equivalence functor is an ‘isomorphism up to isomorphism’; more
precisely, the definition is as follows.1

Definition 32. Given categories C and D, a functor F : C → D is an equivalence of
categories if F is full, faithful, and essentially surjective, where:

(i) F is full if for any objects A and B of C, FAB : C(A, B) → D(F(A), F(B)) is surjec-
tive.

(ii) F is faithful if for any objects A and B of C, FAB : C(A, B) → D(F(A), F(B)) is
injective.

(iii) F is essentially surjective if for any object X of D, there is some object A of C such
that F(A) is isomorphic (in D0 to X.

♠

Perhaps the most significant difference between isomorphism and equivalence of cat-
egories is that two categories can be equivalent even if they have different numbers of ob-
jects. For example, the following functor is an equivalence from 1′ to 1:

F(X) = F(Y) = 1 (11.11)

F(j) = F(k) = Id1 (11.12)

This functor is surjective, hence essentially surjective; and although F is not bijective on
arrows overall, it is bijective on the arrows between any chosen pair of objects. In the

1A more conceptually revealing (but less readily applicable) definition is that a functor F : C → D is an
equivalence if there is an ‘almost inverse’ functor G : D → C: a functor such that G ◦ F is ‘naturally
isomorphic’ to IdC and F ◦G is ‘naturally isomorphic’ to IdD . This makes the relationship to categorical
isomorphism clearer, but requires introducing natural transformations, which we don’t have the space
to do here. For discussion (and a proof that these two notions coincide), see (Awodey, 2010, chap. 7).
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other direction, the following functor is an equivalence from 1 to 1′:

G(1) = X (11.13)

(The fact that G(Id1) = IdX is implied by functoriality.) This functor is not surjective;
but it is essentially surjective, since Y is isomorphic to X.

Here are two further examples of equivalences, which again illustrate the fact that
equivalence can be weaker than isomorphism.

Proposition 9. Any preorder X is categorically equivalent to some poset (where both
are regarded as categories).

Proof. Two objects x and y of X are isomorphic if x . y and y . x. We define the
corresponding poset by first quotienting X by isomorphism, to obtain a set Y: that is,
elements of Y are equivalence classes of isomorphic elements of X. Let us denote the
equivalence class containing x ∈ X as [x]. We then define a binary relation ≤ on Y,
according to

[x] ≤ [y]⇔ x . y (11.14)

The transitivity of . guarantees that this definition is well-posed, in the sense of being
independent of the choice of x and y from within an equivalence class. Furthermore,
the reflexivity and transitivity of. entail the reflexivity and transitivity of≤. It remains
only to confirm that ≤ is anti-symmetric. Indeed, if [x] ≤ [y] and [y] ≤ [x], then x . y
and y . x; hence x and y are isomorphic, and so [x] = [y].

Proposition 10. The category FinVect of finite-dimensional vector spaces (with linear
maps as arrows) is equivalent to the category Mat (of natural numbers with matrices
as arrows).

Proof. First, equip every vector space V in FinVect with an (arbitrary) ordered basis
eV

i .2 Now define a functor F : FinVect → Mat as follows. For any finite-dimensional
vector space V, F(V) is the dimension of V. For any linear transformation f : V→W,
where dim(V) = m and dim(W) = n, F( f ) is the n×m matrix representing f relative
to those bases:3 thus,

f (eV
i ) = F( f )j

ieW
j (11.15)

2Strictly, I ought to write~eV
i , but that looks terrible; I trust the reader to remember that these objects are

vectors.
3See Appendix A.

83



First, we show that F is indeed a functor. If we have two linear transformations
f : U→ V and g : V→W, then

F(g ◦ f )k
ieW

k = g( f (eU
i ))

= g(F( f )j
ieV

j )

= F(g)k
jF( f )j

ieW
i

from which it follows that F(g ◦ f )k
i = F(g)k

jF( f )j
i = (F(g)F( f ))k

i, i.e. that F preserves
composition of arrows. Furthermore, if I is the identity transformation on V, then

eV
j = F(I)i

jeV
i (11.16)

for which the only solution is F(I)i
j = δi

j; thus, F preserves identity arrows.
We now show that F is an equivalence functor. First, for any natural number n, there

is some vector space V in FinVect of dimension n; so F is essentially surjective (indeed,
surjective).

Second, consider any vector spaces V and W in FinVect. If f and g are arrows from
V to W in FinVect such that F( f ) = F(g), then for every basis vector eV

i in V,

f (eV
i ) = F( f )j

ieW
j

= F(g)j
ieW

j

= g(eV
i )

Thus, f and g agree on the basis vectors, and hence on all vectors: that is, f = g. So F is
faithful.

Finally, again consider any vector spaces V and W in FinVect; suppose that their
dimensions are m and n respectively. Then for any n × m matrix Mj

i, define a linear
transformation f : V → W be defined by the condition that for any basis vector eV

i in
V,

f (eV
i ) = Mj

ieW
j (11.17)

It follows immediately that F( f ) = M. So F is full.

One might feel somewhat disquieted by this example: on the face of it, it appears to
suggest that a vector space has the same structure as a natural number, which seems
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either false or nonsensical.4 However, we need to be careful, since (as was discussed
in Chapter 10) categories will often encode their most interesting structure in their net-
works of arrows. And in fact, in this case, we can recover the internal vector-space
structure from the categorical structure: the vectors in an n-dimensional space V may
be identified with the set of linear maps from a 1-dimensional vector space to V, and the
vector-space operations (addition and scalar multiplication) can be defined using cate-
gorical data.5 This enables us to recover vectors from the category FinVect, or—what
comes to the same thing—the category Mat.

11.3. Forgetful functors

A functor which is not an equivalence functor is referred to as a forgetful functor.6 A nice
way to be precise about the concept of a forgetful functor, and about what it is that they
are forgetting, is the so-called “stuff, structure, properties” perspective. The intuition
here is that there are three ways in which a mathematical object can be interesting, and
hence three ways of making it less interesting:

In math we’re often interested in equipping things with extra structure,
stuff, or properties . . . . For example, a group is a set (stuff ) with operations
(structure) such that a bunch of equations hold (properties).7

In other words, the stuff is the raw materials out of which the object is ‘made’; the
structure comprises the relations and properties which organise the stuff into an inter-
esting mathematical object; and the properties are the properties that the object exhibits,
in virtue of having its stuff organised thus-and-so by its structure. Philosophers would
identify the stuff as the ‘ontology’, the structure as the ‘ideology’, and the properties
as the ‘facts’. Given a Σ-model A, the stuff would be the domain |A|, the structure the
signature Σ (or perhaps the set of formulae Form(Σ)), and the properties would be the
sentences that A satisfies (or perhaps all the facts about which formulae the tuples of A
satisfy).

Category theory offers a nice way of formalising this distinction (that’s somewhat
more general than the model-theoretic formalisation). Given a functor F : C → D, we
say that F:

4See Hudetz (2019) for an elaboration of this concern.
5Dewar (nd)
6At least, from a certain perspective. In the literature, the term “forgetful functor” is frequently used

with a more vague denotation.
7(Baez and Shulman, 2010, p. 15)
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• forgets at most properties if it is full and faithful;

• forgets at most structure if it is faithful;

• forgets at most stuff if it is arbitrary.

Note that the stuff-structure-properties distinction is somewhat hierarchical in nature.
Without structure, an object could not satisfy any (interesting) properties; and without
stuff, an object would not be able to exhibit any (interesting) structure. Correspond-
ingly, each of these levels of forgetfulness subsumes the one above: if a functor forgets
stuff, then it might also forget structure and properties; and if it forgets structure, then
it might also forget properties. To see how this classification of functors fits with the
intuitive stuff-structure-properties distinction, let’s consider some examples.8

First, suppose that a functor F : C → D forgets properties: i.e., that it is full and
faithful, but not essentially surjective. That means that there are objects in D that lie
outside the image of F, even up to isomorphism: that is, which are not isomorphic
to any object in the image of F. For example, let AbGrp be the category of Abelian
groups, i.e., groups whose group multiplication operation is commutative, with group
homomorphisms as arrows. Every Abelian group is, of course, a group: so there
is a functor F : AbGrp → Grp, which simply maps every Abelian group to itself
(or, if you prefer, to its “copy” in the category Grp). This functor is full and faith-
ful: since F simply embeds AbGrp within Grp, for any Abelian groups G and H,
AbGrp(G, H) = Grp(F(G), F(H)). But it is not essentially surjective: no non-Abelian
group is isomorphic to any Abelian group, and only Abelian groups lie in the image of
F. Thus, F forgets properties: it forgets the property of being Abelian.

Second, consider a functor F : C → D which forgets structure (and properties) but
not stuff: that is, which is faithful but not full. That means that there are objects X
and Y of C such that the induced function F : C(X, Y) → D(F(X), F(Y)) is injective
but not surjective. So (intuitively) there are more arrows between F(X) and F(Y) in D
than there are between X and Y in C. Insofar as we are taking the arrows to represent
structure-preserving maps, a pair of objects will admit more arrows by virtue of being
less structured: hence, the sense in which F forgets structure. As an example, consider
the functor F : Grp→ Set which maps any group to its underlying set, and any group
homomorphism to its corresponding function. If two homomorphisms f , g : G → H
are distinct from one another, then they must correspond to different functions between
the underlying sets |G| and |H|; hence, F is faithful. But (in general) there are many

8The below sequence of examples is taken from https://ncatlab.org/nlab/show/stuff,+structure,

+property.
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functions between |G| and |H| that do not correspond to homomorphisms, and so F is
not full. Thus, F forgets structure: it forgets group structure.

Finally, consider a functor F : C → Dwhich forgets stuff: that is, which is not faithful.
Then there are objects X and Y of C such that the induced function F : C(X, Y) →
D(F(X), F(Y)) is not injective: that is, that for some pair of arrows f , g : X → Y such
that f 6= g, F( f ) 6= F(g). Intuitively, then, the arrows between F(X) and F(Y) are less
“fine-grained” than those between X and Y: there are more ways of mapping X to Y
than there are ways of mapping F(X) to F(Y). Given that more stuff provides more
“raw material” for a mapping, getting rid of stuff reduces the number of ways such a
mapping could be performed. As a (somewhat trivial) example, consider the (unique)
functor F : Set → 1; this functor sends every set to 1, and every function to Id1. Thus,
F forgets stuff: it forgets the stuff that makes up the sets.
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12. Categories of theories

There are many things that one can do with category theory. Our interest in the topic
is rather more specific: we are interested in using category-theoretic tools to illuminate
the concepts of structure and equivalence that we have been discussing so far. As such,
this final chapter considers how some of what we have already done can be put into
a category-theoretic form. The first section considers how to apply category theory to
the model-theoretic considerations of Part I, and the second looks at how we can use
category theory in the context of the physical theories in Parts II and III.

12.1. Categories of Tarski-models

In Part I, we considered the concept of a class of models of a first-order theory. Now
that we have category-theoretic resources to hand, we can work with the richer concept
of a category of models.1

Definition 33. Given a theory T, the category of models of T is a category whose objects
are models of T and whose arrows are elementary embeddings. ♠

As we discussed in Chapter 1, there are various kinds of mappings between models
that one might work with in model theory. So why do we choose elementary embed-
dings to be the arrows in our category of models? The reason is that if we do so, then
translations between theories induce functors between their categories of models:

Proposition 11. Given theories T1 and T2, let Mod(T1) and Mod(T2) be their categories
of models. If τ : T1 → T2 is a translation, then τ ∗ is extendable to a functor, by stipulat-
ing that for any elementary embedding h : A→ B (where A,B ∈ Mod(T2)), τ ∗(h) = h.

Proof. Suppose that τ ∗(h), i.e. h, is not an elementary embedding of τ ∗(A) into τ ∗(B):
that is, that there is some Σ1-formula φ(x1, . . . , xn) and some a1, . . . , an ∈ |A| such that
τ ∗(A) |= φ[a1, . . . , an] but τ ∗(B) 6|= φ[h(a1), . . . , h(an). It follows that A |= τ (φ)[a1, . . . , an],

1The ideas in this section are covered in much greater detail in Halvorson (2019).
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and B 6|= τ (φ)[h(a1), . . . , an]; so h is not an elementary embedding of A into B. It fol-
lows that given an elementary embedding h in Mod(T2), τ ∗(h) is an elementary em-
bedding in Mod(T1).

Had we taken homomorphisms or embeddings as arrows, this would not hold true,
as the following examples demonstrate.

Example 11. Consider the following theories, T1 and T2. T1 has signature {P}, and
axioms

∃x∃y(x 6= y ∧ ∀z(z = x ∨ z = y)) (12.1a)

∃xPx (12.1b)

whilst T2 has signature {Q}, and axioms

∃x∃y(x 6= y ∧ ∀z(z = x ∨ z = y)) (12.2a)

∃x¬Qx (12.2b)

Figure 12.1 displays the models of these theories: the models of T1 are A1 and B1, and
the models of T2 are A2 and B2.

The map
Qx 7→ ¬Px (12.3)

is a translation from T2 to T1; the associated semantic map will map A1 to A2 and B1 to
B2. But there is a homomorphism from A1 to B1 yet no homomorphisms from A2 to
B2; so there can be no functor from the category of models of T1 with homomorphisms
as arrows to the category of models of T2 with homomorphisms as arrows.

Example 12. Let T1 be the theory in signature {P(1)} with the following axioms:

∃x∃y(∀z(z = x ∨ z = y)) (12.4)

∃x(Px ∧ ∀y(Py→ y = x)) (12.5)

In English: there are at most two things, of which exactly one is P. Let T2 be the theory
in signature {R(2)} with the following axioms:

∃x∃y(∀z(z = x ∨ z = y)) (12.6)

(∀x∀y(Rxy↔ x = y)↔ ∃y∃z(y 6= z)) (12.7)
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Figure 12.1.: The models of the theories in Example 1.

In English: there are at most two things, and R is reflexive just in case there are two
things. The models of T1 and T2 are depicted and labelled in Figure 12.2.

The map
Rxy 7→ (x = y ∧ ∃z¬Pz) (12.8)

is a translation from T2 to T1. However, although there is an embedding h from A1 to
B1, there are no embeddings from A2 to B2; hence, there can be no functor from the
category of models of T1 with embeddings as arrows to the category of models of T2

with embeddings as arrows.

Thus, we take the category of models of a theory to be one with elementary em-
beddings as arrows. We have already seen that invertible translations induce bijective
maps on models; since the extension of such a map to a functor just acts as the identity
on elementary embeddings, it follows more or less immediately that the functor is an
isomorphism between the categories of models—and hence, that it is an equivalence.
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Figure 12.2.: The models of the theories in Example 2.

Thus, intertranslatability entails categorical equivalence.
In the other direction, categorical equivalence does not entail intertranslatability, as

the following example (due to Barrett and Halvorson (2016b)) demonstrates.

Example 13. T1 is in the signature Σ1 = {P(1)
0 , P(1)

1 , . . . }, and consists of the sole axiom

∃x∀y(y = x) (12.9)

T2 is in the signature Σ2 = {Q(1)
0 , Q(1)

1 , . . . }, and consists of the axioms

∃x∀y(y = x) (12.10)

∀y(Q0y→ Q1y) (12.11)

∀y(Q0y→ Q2y) (12.12)
...

That is, both T1 and T2 assert that there is exactly one thing; but T2 asserts that the
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predicate Q0 is such that if the unique thing satisfies the predicate Q0, then it satisfies
every other predicate Qi.

If we identify isomorphic models then the categories of both T1 and T2 are discrete,
i.e., contain no arrows that are not identity arrows. Moreover, any model of of T1 or
T2 can be specified by a subset of N: we include n in the subset just in case the model
satisfies ∃xPnx (for models of T1), or ∃xQnx (for models of T2). In the other direction,
any subset of N determines a model of T1, whilst N itself and any subset of N \ {0}
determines a model of T2. There are ℵ0 members of N, and ℵ0 members of N \ {0};
so up to isomorphism, there are 2ℵ0 models of T1 and 2ℵ0 models of T2. Since Mod(T1)

and Mod(T2) are discrete, any bijection between them is an equivalence of categories.
However, T1 and T2 are not intertranslatable. Suppose that they were, with inverse

translations τ : T1 → T2 and σ : T2 → T1. Let B be the model of T2 that corresponds
to N, i.e. that satisfies ∃xQix for all i ∈ N. Now consider the sentence ∃xQ0x. We
know that B |= ∃xQ0x, and that (up to isomorphism) it is the only model of T2 to do
so. So τ ∗B |= σ(∃xQ0x), since τ and σ are inverse to one another. Since σ(∃xQ0x) is a
Σ1-formula of finite length, there must exist some Pi ∈ Σ1 which does not occur in it.
So now let A be the model obtained from τ ∗B by ‘switching’ the value of Pi: if the sole
object satisfies Pi in τ ∗B then it does not in A, and vice versa (and otherwise, τ ∗B and
A are identical). Since Pi does not occur in σ(∃xQ0x), it follows that A |= σ(∃xQ0x).
So σ∗A |= ∃xQ0x; and hence, σ∗A = B. But since σ∗(τ ∗B) = B, it follows that σ∗ is
not injective, and hence not bijective; so τ and σ cannot be a pair of inverse translations
after all.

Therefore, categorical equivalence of theories is a strictly weaker notion than inter-
translatability. Whether this is a feature or a bug is a thorny question: it will depend on
whether the theories T1 and T2 in the above example ‘ought’ to be regarded as equiva-
lent or not, and the answer to that is not obvious. In the meantime, there is interesting
work to be done in further clarifying the relationship between definability or translata-
bility on the one hand, and categorical structure on the other. For example, Hudetz
(2019) outlines a way to strengthen categorical equivalence so as to make it sensitive to
the definability of the models of one theory in terms of the other, and shows that this is
equivalent to intertranslatability ‘up to surplus structure’ (in a sense that is made pre-
cise). On the other hand, Barrett (nd) shows that if an equivalence functor is induced
from a translation, then the models of the two theories are are codeterminate with one
another (although in a sense weaker than that arising from full intertranslatability).
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12.2. Categories of electromagnetic models

Let us now consider categories of models in physics; in the interests of space I will only
discuss electromagnetism, but the main ideas here could also be applied to Newtonian
mechanics. To the theory of electromagnetic fields we associate a category F , and to
the theory of electromagnetic potentials we associate a category A, where

• An object of F is a 2-form FF on Minkowski spacetimeM that satisfies Maxwell’s
equations (7.12); and

• An arrow in F between the 2-forms F and F′ is an isometry ψ : M → M, such
that F′ = ψ∗F.

• An object inA is a 1-form A on Minkowski spacetime that satisfies equation (8.4);
and

• An arrow in A between the 1-forms A and A′ consists of an isometry ψ : M→ M
and an exact one-form G on M, such that

A′ = ψ∗A + G (12.13)

In other words, the category F represents field-theoretic solutions of Maxwell’s equa-
tions, with isometries regarded as isomorphisms; and the categoryA represents potential-
theoretic solutions of Maxwell’s equations, with isometries and gauge transformations
regarded as isomorphisms. In Chapter 8 I suggested that so long as we confined our
attention to contractible spaces—such as Minkowski spacetime—there is a sense in
which the theory of electromagnetic fields is equivalent to the gauge-invariant content
of the theory of potentials. The following proposition, due to Weatherall (2016), can be
thought of as a way of making this idea precise.

Proposition 12 (Weatherall (2016), Proposition 5.5). The categories F and A are equiv-
alent.

Proof. We define a functor W : A → F as follows. First, given any object A in A, we
define

W(A) := dA (12.14)

Second, given any arrow (ψ, G) in A, we define

W(ψ, G) = ψ (12.15)

93



We need to verify that W is indeed a functor. Given a pair of objects A and A′ in A
such that

A′ = ψ∗A + G (12.16)

then they are mapped by W to, respectively

F = dA

F′ = dA′

= d(ψ∗A + G)

Since ψ is an isometry, d(ψ∗A) = ψ∗(dA); and since G is exact, dG = 0. Hence,

F′ = ψ∗(dA)

= ψ∗F

Hence, if (ψ, G) is an arrow from A to A′, then W(ψ, G) = ψ is an arrow from W(A)

to W(A′). It is immediate from the definition of W that W(IdM, 0) = IdM and that
W(Φ ◦Ψ) = W(Φ) ◦W(Ψ); so W is a functor.

It remains to show that W is full, faithful, and essentially surjective. First, let F be any
object in F . By Stokes’ Theorem (given that dF = 0 is the first of Maxwell’s equations),
there exists some A on M such that F = dA = W(A). So W is surjective, and hence
essentially surjective.

Second, consider any pair of arrows (ψ, G) and (χ, K) from A to A′. If W(ψ, G) =

W(χ, K), then ψ = χ. Since A′ = ψ∗A + G = χ∗A + K, it follows that ψ∗A + G =

ψ∗A + K, and hence that G = K. So (ψ, G) = (χ, K), and hence, W is faithful.
Finally, consider any arrow ψ : W(A)→ W(A′) in F . By definition, this is an isome-

try such that
ψ∗(dA) = dA′ (12.17)

Consider the 1-form G := A′ − ψ∗A. G is closed, i.e. dG = 0:

dG = d(A′ − ψ∗A)

= dA′ − ψ∗(dA)

= 0

where we have used equation (12.17) and the fact that ψ is an isometry. Since M is

94



contractible, it follows that G is exact. Since

A′ = ψ∗A + G (12.18)

it follows that (ψ, G) is an arrow inA, and evidently W(ψ, G) = ψ. Thus, W is full.

This result demonstrates one of the most useful features of categorical equivalence: it
can elicit the sense in which two theories can be regarded as equivalent even if an indi-
vidual model in one theory corresponds to a set of models in the other—provided that
the models in that set are equivalent to one another (formally, that they are regarded as
isomorphic in the ambient category). However, there are some limitations to the above.

One obvious limitation is that it will not hold if we expand our category to include
non-contractible spaces: for, as discussed in Chapter 9, there are pairs of non-gauge-
equivalent potentials A, A′ (over such spaces) that give rise to the same field F. The
functor W (or rather, the extension of W to this enlarged category) would therefore
map A and A′ to F; and clearly, WAA′ would not be surjective, since there are no arrows
between A and A′,2 but there is (at least) the identity arrow between F and itself. That
said, this seems like a feature rather than a bug: as we have already discussed, the fact
that gauge-equivalence is a stricter criterion than field-equivalence seems to indicate
that the potentials theory should not be considered equivalent to the fields theory over
non-contractible spaces, even if gauge-equivalent models are taken to be physically
equivalent.

A more troubling limitation is that Proposition 2 seems to depend quite sensitively
on the question of how we represent gauge transformations. In the above, we took each
gauge transformation to be specified by an exact 1-form G; i.e. by a 1-form such that
for some scalar field λ, G = dλ. What if we instead take a gauge transformation to be
specified by the scalar field λ itself? In particular, recall that when we come to couple
the Maxwell theory to the quantum theory of a charged particle, a gauge transforma-
tion will be specified by such a scalar field λ—it is just that the action of this gauge
transformation on A is given by dλ.

Thus, let us define a category A′. In this category, each object is a four-potential A
on Minkowski spacetime (as before); but an arrow from A to A′ is a pair (ψ,λ), where
ψ : M→ M is an isometry and λ : M→ R is a smooth scalar field such that

A′ = ψ∗A + dλ (12.19)

2Assuming, without loss of generality, that there is no isometry ψ such that A′ = ψ∗A.

95



This is indeed a category, with composition of arrows given by (χ,µ) ◦ (ψ,λ) = (χ ◦
ψ,λ+ µ) and the identity arrow on any A given by (IdM, 0). However, it is not equiva-
lent to the category A.

Proposition 13. There is no full functor from A to A′.

Proof. There exist solutions to Maxwell’s equations that lack any non-trivial isometries;
let A be such a solution. Then the only arrow from A to itself inA is the identity arrow,
i.e. the arrow specified by (IdM, 0). Suppose that J is a functor from A to A′, and
consider J(A). At a minimum, any pair of the form (IdM,λ) for λ a constant scalar field
is an arrow from J(A) to itself. But J(IdM, 0) = (IdM, 0) (by the fact that J is a functor);
so if λ 6= 0, then there is no arrow from A to itself that J sends to (IdM,λ). So J is not
full.

This suggests that we may be able to think of the two categories A and A′ as encod-
ing different interpretations of the theory of electromagnetic potentials. The difference
between these two interpretations, though, is rather subtle. The two interpretations
agree on what the models of the theory are, and they agree on the relations of phys-
ical equivalence between models; what they disagree on are the relations of physical
equivalence between gauge transformations (in a sense, they disagree on the relations of
physical equivalence between relations of physical equivalence). According to A′, two
gauge transformations—say, those represented by scalar fields λ and µ—are physically
inequivalent if λ 6= µ; according to A, if dλ = dµ, then we should regard these two
gauge transformations as equivalent.

This indicates that we should not expect merely moving to a more abstract, category-
theoretic perspective will free us from troublesome questions of interpretation. Instead,
that perspective gives us new tools with which to articulate those questions. As with
most things in life, the category-theoretic resources giveth, by showing how to make
precise a sense in which (for example) the field-theoretic and potential-theoretic formu-
lations of electromagnetism can be seen as equivalent (under the right circumstances);
and it taketh away, by showing how to draw even more fine-grained distinctions be-
tween different potential-theoretic formulations than we could before.
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A. Vector and affine spaces

This appendix reviews basic facts about vector and affine spaces, including the notions
of metric and orientation. To a large extent, the treatment follows Malament (2009).

A.1. Matrices

Definition 34. An m × n matrix is a rectangular table of mn real numbers Aij, where
1 ≤ i ≤ m and 1 ≤ j ≤ n, arrayed as follows:

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 (A.1)

♠

The operation of matrix multiplication is defined as follows.

Definition 35. Given an m× n matrix A and an n× p matrix B, their matrix product AB
is the m× p matrix with entries (AB)i

k, where

(AB)i
k = Ai

jBj
k (A.2)

♠

Note that this uses the Einstein summation convention: repeated indices are summed
over.

Definition 36. Given an m× n matrix Ai
j, its transpose is an n× m matrix denoted by

Ai
j, and defined by the condition that for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, Ai

j = Ai
j, ♠

An element of Rn can be identified with an n× 1 matrix; as such, an m× n matrix A
encodes a map A : Rm → Rn. Such a map is linear, in the sense that for any xi, yi ∈ Rm
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and any a, b ∈ R,
Ai

j(axj + byj) = a(Ai
jxj) + b(Ai

jyj) (A.3)

And, in fact, any linear map from Rm to Rn corresponds to some matrix.
It follows that a square matrix—one that is an n× n matrix, for some n ∈ N—can be

identified with a linear map Rn → Rn.

Definition 37. Given a square n× n matrix Ai
j, the determinant of Ai

j is

det(A) = ∑
σ∈Sn

(
sgn(σ)

n

∏
i=1

Ai
σ(i)

)
(A.4)

where Sn is the permutation group and sgn(σ) is the sign of the permutation σ (see
Appendix B). ♠

Definition 38. Given an m×n matrix Ai
r, an n×m matrix Br

i is its inverse if multiplying
them together in either order yields an identity matrix: that is, if

Ai
rBr

j = δi
j (A.5)

Br
i Ai

s = δr
s (A.6)

where δi
j is the m×m identity matrix and δr

s is the n× n identity matrix. ♠

Definition 39. A square matrix Ai
j is orthogonal if its transpose is its inverse: that is, if

Ai
j Ai

k = δk
j (A.7)

♠

A.2. Vector spaces

Definition 40. A (real) vector space V consists of a set |V|, equipped with a binary opera-
tion + : V×V→ V (addition), a unary operation − (additive inversion), an operation
· : R×V→ V (scalar multiplication), and a privileged element 0 ∈ V (the zero vector),
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such that the following conditions are obeyed (for any ~u,~v, ~w ∈ V and a, b ∈ R):

~u +~v = ~v + ~u (A.8)

~u + (~v + w) = (~u +~v) + w (A.9)

~u + 0 = ~u (A.10)

(−~u) + ~u = 0 (A.11)

a · (b · ~u) = (ab) · ~u (A.12)

1 · ~u = ~u (A.13)

a · (~u +~v) = a · ~u + a ·~v (A.14)

(a + b) · ~u = a · ~u + b · ~u (A.15)

♠

We will often write a~u instead of a · ~u.
Given a set of vectors S ⊆ |V|, the vectors in S are linearly dependent if there exist

~v1, . . . ,~vk ∈ S and a1, . . . , ak ∈ R such that a1~u1 + · · · ak~uk = 0; otherwise, they are
linearly independent.

Definition 41. A basis for V is a set B of linearly independent vectors such that for every
~v ∈ V, there exist ~v1, . . . ,~vk ∈ B and a1, . . . , ak ∈ R such that a1~v1 + · · ·+ ak~vk = ~v. ♠

From now on, we assume that any vector space V we consider is finite-dimensional:
that is, that there exists a finite basis B of V. For such a vector space, there is some
natural number n such that every basis of V contain n elements; we say that n is the
dimension of V, and denote it by dim(V).

Definition 42. Let V be an n-dimensional vector space, and let {~e1, . . . ,~en} be a basis
for V. Given any ~v ∈ V, the components of ~v are the (unique) numbers v1, . . . , vn such
that

~v = vi~ei (A.16)

♠

It follows that relative to a choice of basis, an n-dimensional space may be identified
with Rn, and so with n× 1 matrices.

Definition 43. Given a vector space V, a subspace of V is a vector space W such that
|W| ⊆ |V| and the vector-space structure on W is the restriction of the vector-space on
V to W. ♠

99



Definition 44. Let W be a subspace of V. Two vectors ~v1,~v2 ∈ V are equivalent modulo
W if (~v2 − ~v1) ∈ W: that is, if there is some ~w ∈ W such that ~v2 = ~v1 + ~w. Let the
equivalence class of ~v be denoted [~v]. ♠

Definition 45. Let W be a subspace of V. The quotient of V by W is a vector space V�W,
defined as follows. The underlying set is the partition of V by equivalence modulo W:
i.e. the elements of V�W are equivalence classes [v]. Addition and scalar multiplication
are defined as follows:

[~v1] + [~v2] = [~v1 +~v2] (A.17)

a[~v] = [a~v] (A.18)

It is straightforward to verify that these definitions do not depend on the choice of
representative. ♠

Definition 46. Let V and W be two vector spaces. The direct sum of V and W, denoted
V⊕W, is the vector space defined as follows: its underlying set is V×W, and addition
and scalar multiplication are defined pointwise:

(~v, ~w) + (~v′, ~w′) = (~v +~v′, ~w + ~w′) (A.19)

a(~v, ~w) = (a~v, a~w) (A.20)

It is straightforward to show that V⊕W is a vector space (and that if V and W are finite-
dimensional, that dim(V⊕W) = dim(V) + dim(W)). The element (~v, ~w) of V⊕W will
be denoted by ~v⊕ ~w. ♠

Proposition 14. For any vector spaces V and W, V and W are both subspaces of V⊕
W.

Definition 47. Let V and W be vector spaces. A linear map is a map f : V → W such
that for any ~u,~v ∈ V and any x ∈ R,

f (~u +~v) = f (~u) + f (~v) (A.21)

f (x · ~u) = x · f (~u) (A.22)

♠

Given bases on V and W, and hence an identification of V with Rm and W with Rn

(where m = dim(V) and n = dim(W)), a linear map f : V → W may be identified
with an n×m matrix Fi

j.
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Definition 48. A linear map f : V→W is a linear isomorphism if it is invertible. ♠

Definition 49. Given an invertible linear map f : V → V, the determinant of f is the
determinant of the matrix Fi

j that represents f relative to any basis B of V. ♠

It can be shown that the determinant is independent of the choice of basis, so this
definition is well-formed.

Proposition 15. Given a basis B of V, if linear maps f , g : V → W agree on B (i.e. if
f (~v) = g(~v) for all ~v ∈ B), then f = g.

Proposition 16. Given two ordered bases B = 〈~e1, . . . ,~en〉 and B′ = 〈~e′1, . . . ,~e′n〉 of V,
there is a unique linear map f : V→ V such that~e′i = f (~ei) for all 1 ≤ i ≤ n.

Definition 50. Given a vector space V, an inner product on V is a non-degenerate, bi-
linear, symmetric map 〈 , 〉 : V×V→ R: that is, a map such that

〈~u,~v〉 = 〈~v,~u〉 (A.23)

〈~u, a~v〉 = a〈~u,~v〉 (A.24)

〈~u,~v + w〉 = 〈~u,~v〉+ 〈~u, w〉 (A.25)

If ~u 6= 0, then for some ~v ∈ V, 〈~u,~v〉 6= 0 (A.26)

♠

A vector space equipped with an inner product will be referred to as an inner product
space.

Definition 51. Given an inner product space V, two vectors ~u,~v ∈ V are orthogonal if
〈~u,~v〉 = 0. ♠

Definition 52. Given an inner product space V, a basis B of V is orthonormal if for all
~u,~v ∈ B,

〈~u,~v〉2 =

0 if ~u 6= ~v

1 if ~u = ~v
(A.27)

♠

Given an orthonormal basis B of V, the signature of V is the pair (n+, n−), where
n+, n− ∈ N, such that there are n+ elements u ∈ B such that 〈u, u〉 = 1, and n−

elements u ∈ B such that 〈u, u〉 = −1. Evidently, n+ + n− = dim(V); moreover, one
can show that the signature of V is independent of what orthonormal basis is chosen.
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Definition 53. An inner product on a vector space V is positive definite if 〈~v,~v〉 ≥ 0 for
all ~v ∈ V; equivalently, if its signature is (dim(V), 0). ♠

Definition 54. Given an inner product space V, a linear automorphism f : V → V is
an orthogonal map if it preserves the inner product: that is, if

〈 f (~u), f (~v)〉 = 〈~u,~v〉 (A.28)

♠

Definition 55. Let V be a vector space, and let B and B′ be two ordered bases of V. B
and B′ are co-oriented if the linear automorphism of V taking B into B′ (see Proposition
16) has positive determinant. ♠

Proposition 17. Co-orientation is an equivalence relation on the set of ordered bases of
V, with exactly two equivalence classes (if V is non-empty).

Definition 56. An orientation on V is a choice of equivalence class of co-oriented or-
dered bases on V as the set of right-handed ordered bases; the other equivalence class
is referred to as the set of left-handed ordered bases. A vector space equipped with an
orientation is said to be an oriented vector space. ♠

A.3. Affine spaces

Since a vector space is a group, we can form the principal homogeneous space of a
vector space. Such a space is known as an affine space.

Definition 57. Let V be a vector space. An affine space V is a set |V| equipped with a
free and transitive action a 7→ a + ~v of V: that is, for any a, b ∈ V there is a unique
~v ∈ V such that

b = a +~v (A.29)

We will use (b− a) to denote this unique vector. ♠

Proposition 18. If W is a proper subspace of V, then the action of W on V is free but
not transitive.

Proposition 19. If W is a subspace of V, then the quotient U = V�W is an affine space
with associated vector space U = V�W.
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Proof. We define the action of U on U as follows. Let ~u ∈ U and x ∈ U : thus y = [x],
for some y ∈ V , and ~u = [~v], for some ~v ∈ V. Then define

x + ~u := [y +~v] (A.30)

First, we need to check that this is well-defined, i.e. that it is independent of the choice
of y and ~v. So let y′ and ~v′ be such that y′ = y + ~w and ~v′ = ~v + ~w′, for ~w, ~w′ ∈W. Then

y′ +~v′ = y +~v + (~w + ~w′) (A.31)

and so (since (~w + ~w′) ∈ W) [y′ +~v′] = [y +~v], and so our definition is indeed well-
defined.

Now suppose that x1, x2 ∈ U , with x1 = [y1] and x2 = [y2] for y1, y2 ∈ V . Since the
action of V on V is free and transitive, there is a unique ~v ∈ V such that y2 = y1 +~v.
Let ~u = [~v]. Then:

x1 + ~u = [y1 +~v]

= x2

So the action of U on U is transitive. Furthermore, if x2 = x1 + ~u′, i.e., [y2] = [y1 +~v′]
(for some ~v′ ∈ V such that [~v′] = ~u′), then y2 = y1 + ~v′ + ~w for some ~w ∈ W; so
~v = ~v′ + ~w, and hence ~u′ = [~v′] = [~v] = ~u. So the action of U on U is free.

Definition 58. Let V andW be affine spaces, with (respective) underlying vector spaces
V and W. The product affine space V ×W is the affine space whose underlying set is
|V| × |W| and whose associated vector space is V⊕W, where the action of V⊕W on
|V| × |W| is given by

(~v + ~w)(x, y) = (x +~v, y + ~w) (A.32)

♠

Structures on an affine space’s associated vector space can be ‘transferred’ to the
affine space, as the following two definitions indicate.

Definition 59. A metric affine space is an affine space V whose associated vector space
V is an inner product space. ♠

A metric affine space carries a notion of distance: given any two points x, y ∈ V , the
distance between them is |y− x|.
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Definition 60. An oriented affine space is an affine space V whose associated vector space
V has an orientation. ♠

A.4. Vector calculus on Euclidean space

Throughout this section, letX be an oriented Euclidean space: that is, a three-dimensional
affine space whose associated vector space X is equipped with a positive-definite met-
ric and an orientation.

Definition 61. A vector field is a smooth map ~V : X → X. ♠

Definition 62. Given a scalar field φ : X → R and a vector ~v ∈ X, the directional
derivative (of λ along ~v) is a scalar field whose value at any point x ∈ X is given by

∇~vφ = lim
ε→0

φ(x + ε~v)− φ(x)

ε
(A.33)

♠

As a notational special case, suppose that we have introduced a right-handed, or-
thonormal basis 〈~e1,~e2,~e3〉 on X. Then the directional derivative ∇~eiφ will be denoted
by ∇iφ. We use this basis to define the operators grad and div; however, these defini-
tions will pick out the same operators if we use any other right-handed, orthonormal
basis.

Given a vector field ~V : X → X, the components of ~V (relative to this basis) are the
three scalar fields V1, V2, V3 such that ~V = Vi~ei〉.

Definition 63. Given a scalar field φ : V → R, the gradient of φ is a vector field grad(φ)

whose components are
grad(φ)i = ∇iφ (A.34)

♠

Geometrically, the gradient is a vector field whose direction is the direction in which
φ is most strongly changing, and whose magnitude is the rate at which φ is changing
along that direction.

Definition 64. Given a vector field ~V : X → X, the divergence of ~V is a scalar field
div(~V) given by

div(~V) = ∑
i
∇iVi (A.35)

♠
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Gometrically, the divergence of ~V at a point x ∈ X expresses the extent to which x is
a source or a sink for ~V: if the ‘outflow’ of ~V around x exceeds the ‘inflow’, then div(~V)

is positive; if the inflow exceeds the outflow, it is negative; and if inflow is equal to
outflow, then it is zero.

Definition 65. Given a vector field ~V : X → X, the curl of ~V is a vector field curl(~V)

whose components are

(curl(~V))1 = ∇2V3 −∇3V2 (A.36)

(curl(~V))2 = ∇3V1 −∇1V3 (A.37)

(curl(~V))3 = ∇1V2 −∇2V1 (A.38)

♠

Geometrically, the curl of ~V at a point x ∈ X expresses the ‘rotation’ of ~V at x: the
direction of curl(~V) is the axis of rotation (using the right-hand-rule), and its magnitude
expresses the amount of rotation.
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B. Group theory

B.1. Groups

Definition 66. A group consists of a set G, equipped with a binary operation ∗ (of group
multiplication), a unary operation −1 (of inversion), and a privileged element e (the iden-
tity), such that for any g, h, k ∈ G:

g ∗ (h ∗ k) = (g ∗ h) ∗ k (B.1)

g ∗ e = g = e ∗ g (B.2)

g−1 ∗ g = g = g ∗ g−1 (B.3)

♠

We will frequently abbreviate g ∗ h by gh.

Example 14. Any vector space is a group, with addition as the group operation (and
the zero vector as the identity, and additive inverse as group inverse).

Example 15. The real numbers are a group with respect to addition (with 0 as the iden-
tity and−x as the inverse of x) and with respect to multiplication (with 1 as the identity
and 1/x as the inverse of x).

Example 16. Given a set A, a permutation of A is a bijection f : A→ A. The symmmetric
group of A is the group Sym(A) consisting of all permutations of A, with composition
as the group operation.

Example 17. If a finite set A has n elements, then Sym(A) is denoted by Sn. A trans-
position is a permutation τ ∈ Sn that just exchanges two elements: i.e. is such that for
some a, b ∈ A where a 6= b, τ (a) = b and τ (b) = a, and for all other c ∈ A, τ (c) = c.

Any σ ∈ Sn can be expressed as a finite composition of transpositions. It can be
shown that if σ is expressible as an even number of transpositions, then it is only ex-
pressible as an even number of transpositions; and similarly in case σ is expressible as
an odd number of transpositions. Accordingly, σ is given a sign sgn(σ): if it is an even
number then sgn(σ) = +1, and if it is an odd number then sgn(σ) = −1.
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Definition 67. Given groups G and H, a (group) homomorphism is a map φ : G → H
such that for any g, g′ ∈ G,

φ(g ∗ g′) = φ(g) ∗ φ(g′) (B.4)

♠

Definition 68. Given a group G, a subset H ⊆ G is a subgroup of G if H is closed
under group multiplication and inversion: that is, if for all g, h ∈ H, g ∗ h ∈ H and
g−1 ∈ H. ♠

We can also state this as follows: a subset H of G is a subgroup if e ∈ H and H is a
group under the restriction of the operations ∗ and −1 to H.

B.2. Group actions

Definition 69. Given a group G and set X, an action of G on X assigns every g ∈ G to
some bijection g• : X → X, such that for any g, h ∈ G and x ∈ X,

(gh)x = g(hx) (B.5)

♠

Definition 70. Given an action of G on X, two points x, y ∈ X are G-related if the one
can be mapped to the other by G: that is, if there is some g ∈ G such that y = gx.
(The proof that this is an equivalence relation is left as an exercise.) A G-orbit in X is an
equivalence class of G-equivalent points of X. ♠

Definition 71. Given an action of a group G on some set Ω, the quotient of Ω by G is the
set Ω�G consisting of G-orbits in Ω. ♠

Definition 72. An action of G on X is transitive if for any x, y ∈ X, there is some g ∈ G
such that y = gx. ♠

In other words, a transitive group action is one such that any two elements of X are
G-related; hence, a transitive group action is one for which there only exists a single
orbit.

Definition 73. An action of G on X is free if for any x ∈ X and any g, h ∈ G: if gx = hx
then g = h (or, equivalently: if g 6= h then gx 6= hx). ♠

Thus, a free action is one where distinct elements of G have distinct effects on every
element of X.
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Definition 74. Let X and Y be G-sets. A map f : X → Y is G-equivariant if for any g ∈ G
and x ∈ X,

f (gx) = g( f (x)) (B.6)

♠

Actions which are both free and transitive are said to be regular, and have the follow-
ing important feature:

Proposition 20. Suppose that X and Y are G-sets where the action of G is free and
transitive. Then there exist G-equivariant bijections f : X → Y and f−1 : Y → X.

Proof. Pick any points x0 ∈ X and y0 ∈ Y, and let f (x0) = y0. For any other x ∈ X,
we know that x = gxx0 for some unique element gx of G; now set f (x) = gxy0. This
suffices to determine f ; we now show that f is a G-equivariant bijection. First, for any
x ∈ X and any g ∈ G,

f (gx) = f (ggxx0) = ggxy0 = g( f (x))

So f is G-equivariant.
Next, consider any x1 = g1x0 and x2 = g2x0 in X. If f (x1) = f (x2), i.e. f (g1x0) =

f (g2x0), then g1y0 = g2y0. But since G acts freely on Y, it follows that g1 = g2 and so
x1 = x2. So f is injective.

Finally, consider any y ∈ Y, and (again using the fact that G’s action on Y is regular),
express it in the form gyy0. Then

f (gyx0) = gy( f (x0)) = gyy0 = y

So f is surjective, and hence a bijection.
Showing that f−1 is G-equivariant is left as an exercise.

A G-set for which the action of G is regular is said to be a principal homogeneous space
for G, or alternatively a G-torsor. Taking bijective G-equivariant maps as the appropriate
notion of isomorphism for G-sets, we see that G has, up to isomorphism, a unique
principal homogeneous space.1

1If that’s the case, why don’t we speak instead of the principal homogeneous space for G, just as we speak
of the real numbers as the unique (up to isomorphism) complete ordered field? That’s a good question;
one reason not to do so is that there will typically be multiple isomorphisms between two principal
homogeneous spaces for G, so there is no canonical way to identify one principal homogeneous space
with another (whereas there is a unique isomorphism between two complete ordered fields).
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Example 18. Given a vector space V, the principal homogeneous space for V (regarded
as a group) is the affine space V .
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C. Differential forms

C.1. Multi-covectors

Definition 75. Let V be a vector space. A covector (over V) is a linear map p : V→ R.
We refer to the set of covectors over V as the dual vector space, and denote it by V∗. ♠

It is not hard to show that V∗ is also a vector space (by defining addition and scalar
multiplication pointwise), of the same dimension as V. The dual vector space to a direct
sum of vector spaces is the direct sum of the duals: that is, (V⊕W)∗ = V∗ ⊕W∗.

Definition 76. Let V be a vector space. For any k ∈ N, a k-covector is an alternating
multilinear map q : Vk → R; that is, a map which is linear in each argument, and which
has the property that swapping any two arguments changes the sign of the result. ♠

Thus, a 1-covector is a covector; a 2-covector is an antisymmetric bilinear map f :
V ×V → R; and so on. We consider real numbers to be 0-covectors. The set of k-
covectors over a vector space V will be denoted Λk(V∗).

If the arguments fed to a k-covector are linearly dependent, then the result will van-
ish: for example, given a 2-covector p, if we feed it ~u and a~u (where a ∈ R),

p(~u, a~u) = ap(~u,~u) = 0 (C.1)

If V is n-dimensional, then there can be at most n linearly independent vectors, and so
any k-covector for k > n will be trivial; for this reason, we typically treat the n-covectors
as the end of the line.

We can form new multi-covectors out of old ones by using the exterior product:

Definition 77. Given a k-covector f and an l-covector g, their exterior product f ∧ g is
the (k + l)-covector whose result, for any ~v1, . . . ,~vk+l ∈ V, is given by

( f ∧ g)(~v1, . . . ,~vk+l) =
1

k!l! ∑
σ∈Sk+l

sgn(σ) f (~vσ(1), . . . , fσ(k)) g(~vσ(k+1), . . . ,~vσ(k+l)) (C.2)

110



where Sk+l is the permutation group for k + l elements, and sgn(σ) is the sign of the
permutation σ (see Appendix B). ♠

For example, the exterior product of two covectors p and q is a 2-covector p ∧ q,
defined by the condition that for any ~u,~v ∈ V,

(p ∧ q)(~u,~v) := p(~u)q(~v)− p(~v)q(~u) (C.3)

Similarly, the exterior product of a covector p with a 2-covector r is a 3-covector p ∧ r,
such that for any ~u,~v, ~w ∈ V,

(p ∧ r)(~u,~v, ~w) = p(~u)r(~v, ~w) + p(~v)r(~w,~u) + p(~w)r(~u,~v) (C.4)

C.2. Euclidean multi-covectors

Let X be oriented Euclidean vector space, i.e. a three-dimensional vector space equipped
with a positive-definite inner product and an orientation. The inner product induces
a very useful isomorphism between vectors and covectors (i.e. between X and X∗),
known as the musical isomorphism. On the one hand, given any vector ~v ∈ X, its associ-
ated covector is the linear map ~v[ : X→ R such that for any w ∈ X,

~v[(~w) = 〈~v, ~w〉 (C.5)

In the other direction, given a covector p, its associated vector p] is defined as the vector
such that for any vector v ∈ X,

〈p],~v〉 = p(~v) (C.6)

In the interests of space, we skip over proving that this condition does pick out a unique
vector.

Moreover, since X carries both an inner product and an orientation, it exhibits Hodge
duality. That is, for any 1 ≤ k ≤ 3, there is an isomorphism between Λk(X∗) and
Λ3−k(X∗): i.e., between the scalars and the 3-covectors, and between the covectors and
the 2-covectors. These isomorphisms are given by the Hodge star operator, which we
define as follows. Let 〈~e1,~e2,~e3〉 be an (arbitrarily chosen) right-handed and orthonor-
mal basis of X; and let ei := (~ei)

[ (resulting in a basis 〈e1, e2, e3〉 of Λ1(X)). Then the
isomorphism ? : R→ Λ3(X) is defined by

? 1 = e1 ∧ e2 ∧ e3 (C.7)
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and the isomorphism ? : Λ3(X)→ R by

? (e1 ∧ e2 ∧ e3) = 1 (C.8)

The isomorphism ? : Λ1(X)→ Λ2(X) is defined by

?e1 = e2 ∧ e3 (C.9)

?e2 = e3 ∧ e1 (C.10)

?e3 = e1 ∧ e2 (C.11)

and, finally, the isomorphism ? : Λ2(X)→ Λ1(X) by

?(e1 ∧ e2) = e3 (C.12)

?(e2 ∧ e3) = e1 (C.13)

?(e3 ∧ e1) = e2 (C.14)

Since the Hodge star is required to be linear, these conditions fix its action uniquely.
Moreover, it can be shown that the Hodge star (so defined) is independent of which
right-handed orthonormal basis of X is chosen.

We can use the Hodge star and wedge product to express the cross product in a more
geometrical fashion: given a pair of vectors ~v, ~w ∈ X,

~v× ~w = (?(~v[ ∧ ~w[))] (C.15)

In other words, we take our vectors, flatten them to a pair of covectors, take their wedge
product (a 2-covector), apply the Hodge star to that 2-covector to get a covector back
again, and then sharpen that to make a vector. Easy!1

C.3. Minkowski multi-covectors

Let M be an oriented Minkowski vector space, i.e. a four-dimensional vector space
equipped with a Lorentzian inner product and an orientation. Again, the inner product
means that we can establish a musical isomorphism between M and M∗, again by the

1In fact, one can simplify this a bit by defining a wedge product directly on X—thereby constructing an
exterior algebra of multivectors—and then introducing a Hodge duality between vectors and 2-vectors.
With that duality, we can write this expression as ~v× ~w = ?(~v ∧ ~w). However, such a construction still
requires both a metric and an orientation, since those are required to (uniquely) define the Hodge star
operator.
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conditions that for any ~ξ,~η ∈M and p ∈M∗,

~ξ[(~η) = 〈~ξ,~η〉 (C.16)

〈p],~ξ〉 = p(~ξ) (C.17)

And again, since M carries both an inner product and an orientation, it exhibits
Hodge duality. In this case, Hodge duality holds between Λk(M∗) and Λ4−k(M∗), for
each 0 ≤ k ≤ 4: that is, between scalars and 4-covectors, covectors and 3-covectors,
and between 2-covectors and 2-covectors. Again, take an arbitrary right-handed or-
thonormal basis 〈~e0,~e1,~e2,~e3〉, set eµ = (~eµ)[ to obtain the dual basis 〈e0, e1, e2, e3〉, and
define:

? 1 = e0 ∧ e1 ∧ e2 ∧ e3 (C.18)

?e0 = e1 ∧ e2 ∧ e3 (C.19)

?e1 = e0 ∧ e2 ∧ e3 (C.20)

?e2 = e0 ∧ e3 ∧ e1 (C.21)

?e3 = e0 ∧ e1 ∧ e2 (C.22)

?(e0 ∧ e1) = e3 ∧ e2 (C.23)

?(e0 ∧ e2) = e1 ∧ e3 (C.24)

?(e0 ∧ e3) = e2 ∧ e1 (C.25)

?(e1 ∧ e2) = e0 ∧ e3 (C.26)

?(e1 ∧ e3) = e2 ∧ e0 (C.27)

?(e2 ∧ e3) = e0 ∧ e1 (C.28)

?(e0 ∧ e1 ∧ e2) = −e3 (C.29)

?(e0 ∧ e3 ∧ e1) = −e2 (C.30)

?(e0 ∧ e2 ∧ e3) = −e1 (C.31)

?(e1 ∧ e2 ∧ e3) = −e0 (C.32)

? (e0 ∧ e1 ∧ e2 ∧ e3) = −1 (C.33)
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C.4. Differential forms

Finally, we introduce differential forms: just as a vector field is a vector-valued field, so
a differential form is a multicovector-valued field.

Definition 78. Let V be an affine space with vector space V. A k-form on V is a smooth
map p : V → Λk(V∗). ♠

Addition, scalar multiplication, and exterior multiplication of differential forms are
defined pointwise. As with multi-covectors, the only non-trivial k-forms on an n-
dimensional space are those for k ≤ n. The set of k-forms on V is denoted by Ωk(V),
and the set of all differential forms on V by Ω(V).

For oriented Euclidean space and oriented Minkowski spacetime, there is a musi-
cal isomorphism between the set of 1-forms and the set of vector fields, and Hodge
dualities between the appropriate sets of k-forms; again, these are defined pointwise.
Thus, on Euclidean space Hodge duality relates 1-forms to 2-forms, and 3-forms to
scalar fields; while on Minkowski spacetime Hodge duality relates 1-forms to 3-forms,
2-forms to 2-forms, and 4-forms to scalar fields.

However, in addition to this, differential forms also exhibit a very natural kind of
differential calculus.2 First, given any scalar field f , we define the differential of f to be
the 1-form d f such that for any vector ~v ∈ V,

d f (~v) = ∇~v f (C.34)

(where ∇~v is the directional derivative with respect to ~v; see Appendix A). The exten-
sion of this concept to arbitrary differential forms is known as the exterior derivative.

Definition 79. Let V be an n-dimensional affine space. The exterior derivative is the
unique map d : Ω(V) → Ω(V) such that for any k < n, d : Ωk(V) → Ωk+1(V), and
which has the following properties:

• for any scalar field (0-form) f ,

d f (V) = ∇V f (C.35)

• for any k-form p,
d(dp) = 0 (C.36)

2Although the perspicacious reader might have suspected this would be true, given the name.
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• for any x, y ∈ R and p, q ∈ Ωk(V),

d(xp + yq) = xdp + ydq (C.37)

• and for any p ∈ Ωk(V), q ∈ Ω(V),

d(p ∧ q) = dp ∧ q + (−1)kp ∧ dq (C.38)

♠

In fancy lingo, the exterior derivative is a linear and idempotent antiderivation on
the exterior algebra of differential forms, which extends the differential on scalar fields.
It is non-trivial to show that there exists an operator with these properties, and that it
is unique; however, we will just take that fact as given.

C.5. Differential forms and Euclidean vector calculus

We can use differential forms on oriented Euclidean space X to better understand the
vector-calculus operators discussed in Appendix A. First, as discussed above, the dif-
ferential of a scalar field is a 1-form. The gradient is the vector field obtained from the
differential by application of the musical isomorphism, that is:

grad( f ) = (d f )] (C.39)

Thus, the gradient corresponds to the exterior derivative of a scalar field.
The exterior derivative of a 1-form P is a 2-form dP, whose components (with respect

to some orthonormal basis ei on X∗) are

(dP)ij = ∇iPj −∇jPi (C.40)

where Pi are the components of P with respect to that same basis (i.e. P = Piei), and∇i

is the directional derivative with respect to the dual basis~ei. As a result, if we take the
Hodge dual then we obtain a 1-form

(?dP)1 = ∇2P3 −∇3P2 (C.41)

(?dP)2 = ∇3P1 −∇1P3 (C.42)

(?dP)3 = ∇1P2 −∇2P1 (C.43)
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which we recognise as the same pattern of components as the curl; in more intrinsic
geometric language, for any vector field ~V,

curl(~V)[ = ?d(~V[) (C.44)

So we can take the curl of a vector field by flattening it (to a 1-form), taking its exterior
derivative (2-form), applying the Hodge dual (1-form) and sharpening it (vector field).
Hence, the curl operator corresponds to the exterior derivative of a 1-form.

Finally, the exterior derivative of a 2-form T is a 3-form dT, which we can express as

dT = (∇1T23 +∇2T31 +∇3T12)e1 ∧ e2 ∧ e3 (C.45)

Thus, when we apply the Hodge star we obtain a scalar field

? dT = ∇1T23 +∇2T31 +∇3T12 (C.46)

It follows that given a vector field ~V, if we first flatten it to a 1-form, then turn into a 2-
form (via the Hodge star), then take the exterior derivative (to get a 3-form) and finally
convert it into a scalar field (by the Hodge star again), we have obtained the divergence;
that is,

div(~V) = ?d ? (~V[) (C.47)

So the divergence operator corresponds to taking the exterior derivative of a 2-form.
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